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Abstract—Object detection is a core domain within machine 

learning. It encounters unique challenges when applied to 

sports, particularly when it is applied to swing motions – 

particularly with swiftly moving, small area objects. This 

research focuses on the specific task of tennis ball detection 

within frames of professional matches. Tennis balls, with their 

diminutive size and speeds exceeding 100 miles per hour, 

demand precise localization. The methodology involves 

collecting training and testing data, including over 2000 

combined images of generic tennis ball images and frames 

extracted from professional points sourced by the Association of 

Tennis Professionals (ATP). Two separate solutions will be 

studied: Mask R-CNN and YOLOv8. Both of these models aim 

to address the challenges posed by the distinctive characteristics 

of tennis balls. While the study pushes questions to be further 

addressed, its significance lies in contributing insights to the 

effectiveness of these different models towards high velocity 

object tracking. 

Keywords—tennis ball, object detection, CNN, Mask R-CNN, 

YOLOv8, precision, computer vision. 

I. INTRODUCTION 

In the recent years, the intersection of computer vision and 
sports analytics has produced considerable advancements, 
transforming the way we perceive and engage with live 
sporting events. One intriguing application within this domain 
is the detection of sports objects, a subset of object detection 
tasks in machine learning. This research emphasizes the 
importance of being able to maintain consistent tracking of an 
object with a high velocity and low area across live video feed. 

Object detection, a popular feat of computer vision, has 
witnessed extensive exploration and innovation. Particularly, 
sports ball detection introduces unique challenges, as it 
demands the identification of objects identified by high 
velocities and small sizes. This paper covers the investigation 
of the complex object detection problem during live 
professional match play. Tennis balls, with a surface area of 
approximately 19.63 square inches, travel across the court at 
speeds varying to over 100 miles per hour. The intrinsic 
difficulty of this task lies not only in the size and speed of the 
tennis balls but also in the dynamic nature of live tennis 
matches. 

The primary objective of this research is to leverage 
current state-of-the-art deep neural network algorithms to 
develop robust solutions for tennis ball detection within image 
frames. Successful implementation holds immense potential 

for advancing sports technology, providing tools that can 
contribute to a deeper understanding of real-time tennis court 
line calling systems. 

The training and evaluation of the proposed solutions rely 
on carefully curated datasets, composed of both training and 
test data. The collection process is extensive, involving 
gathering images of tennis balls and splitting tennis videos 
into collections of frames. To assess the performance of the 
developed models, the research adopts a binary classification 
approach, categorizing predictions into “yes” or “no” 
evaluations. Evaluation metrics such as precision and mean 
average precision (mAP) provide a comprehensive analysis of 
the models’ effectiveness in capturing tennis ball instances. 

This paper presents two distinct solutions for tennis ball 
detection: Solution 1 uses the Mask R-CNN architecture, 
while Solution 2 uses the YOLOv8 architecture. Each solution 
undergoes a meticulous development process, including data 
manipulation to enhance the model’s training. The results are 
subsequently analyzed using the metrics listed prior. 

Overall, this research draws inspiration from existing 
studies, incorporating methods and strategies from recent 
works on tennis ball recognition using deep learning 
algorithms. By comparing the performance of Mask R-CNN 
and YOLOv8 CNN, this study aims to contribute valuable 
findings to the evolving landscape of object detection within 
the realm of professional sports. 

Personally, I am interested in researching this topic due to 
my attachment to the sport. I have been an active tennis player 
for over 13 years as of this report’s creation, and practice it 
actively. I also keep up with the professional scene, which 
inspired me to ask questions about the design of professional 
tennis’ automatic systems, including line calling. There are 
many cameras placed around the court to capture all the angles 
of every tennis shot, including finely tracking its exact 
location when landing. Being able to actively detect tennis 
balls is industrially applied, and performing this research can 
provide an insight to the methodology employed for this task. 

II. RELATED WORK 

A. Color and Contour Classification of Tennis Balls 

The tennis ball detection landscape encompasses a variety 
of methodologies with one notable approach relying on color-
based recognition and contour analysis. [1] Employing a 
recognition algorithm grounded in the Hue, Saturation, and 



Value (HSV) color space, a robotic system can be applied to 
segment pixels exhibiting a distinct color characteristic. The 
subsequent application of a Hough circle transformation [2] 
accentuates the round contour of the objects within the image. 
This dual strategy involves both color and contour features to 
detect tennis balls during optimal camera conditions, which is 
relevant to that presented during live feed by the ATP. 
However, this approach presents challenges with scenarios 
involving background colors resembling tennis balls or 
potential misclassifications of irrelevant items in the 
background.  

B. TrackNet 

TrackNet [3] leverages an extensive dataset sourced from 
the broadcast video of the tennis men’s singles final at the 
2017 Summer Universiade, focusing on the development and 
evaluation of the TrackNet framework for tennis ball detection 
and tracking. While this study primarily centers on tennis, its 
methodology draws inspiration from Archana’s algorithm [4], 
which is an image processing technique. Archana’s approach 
serves as a benchmark for comparison, emphasizing the shift 
towards deep learning networks for improved object 
detection. The dataset itself comprises 20,844 frames with 
labeled attributes. Additionally, evaluation is extended to the 
challenging domain of badminton, demonstrating the 
network’s adaptability to other domains. This research project 
sheds light onto high velocity object tracking, which is 
explored throughout this research paper. 

C. Region Proposal Network 

Convolutional neural networks (CNNs) form the 
foundational architecture for many computer vision tasks, 
including object detection. These neural networks are 
specifically designed to process and analyze visual data by 
leveraging convolutional layers. Convolutional operations 
involve the application of filters or kernels to input images, 
extracting features hierarchically. These features are learned 
through the network's training process, enabling the model to 
recognize patterns such as edges, textures, and more complex 
visual elements. The use of pooling layers helps reduce spatial 
dimensions, focusing on essential information. CNNs have 
proven highly effective in image-related tasks, providing the 
groundwork for subsequent advancements in object detection 
methodologies like Faster R-CNN. 

The Faster R-CNN [5] architecture introduced Region 
Proposal Networks (RPN) to enhance the speed of detection 
frame generation, a critical advantage over traditional 
methods. RPN consists of two key components: anchor 
generation and bounding box regression. Anchors, 
representing candidate boxes at each sliding window position, 
are classified and refined through Softmax and bounding box 
regression, respectively. The proposal layer synthesizes 
positive anchors and their corresponding regression offsets, 
producing recommendations while eliminating unsuitable 
proposals. The RPN structure significantly improves the 
efficiency of generating detection frames compared to 
methods like selective search employed by traditional CNN 
models. 

D. Mask R-CNN 

Mask R-CNN [6] is an extension of the Faster R-CNN 
framework, designed specifically for instance segmentation 
tasks. It maintains the two-stage process of Faster R-CNN, 

featuring a Region Proposal Network (RPN) for candidate 
object boxes and a second stage for classification and 
bounding-box regression. What sets Mask R-CNN apart is the 
introduction of a third branch dedicated to generating binary 
masks for each Region of Interest (RoI), providing detailed 
spatial information for object instances. 

During training, Mask R-CNN employs a multi-task loss 
function for each RoI, combining classification loss, 
bounding-box loss, and mask loss. The mask branch produces 
pixel-wise predictions, ensuring pixel-to-pixel 
correspondence and employing the RoIAlign layer to 
accurately align features within RoIs. This layer uses bilinear 
interpolation to address quantization issues and preserve 
spatial layout fidelity. 

The flexibility of Mask R-CNN is highlighted through its 
compatibility with various backbone architectures, such as 
ResNet, ResNeXt, and Feature Pyramid Network (FPN). The 
framework achieves state-of-the-art performance in instance 
segmentation, outperforming other models on datasets like 
COCO. Mask R-CNN will be employed as the first solution 
for the tennis ball detection task, utilizing a dataset registered 
through COCO. 

E. YOLOv8 

The YOLO (You Only Look Once) series [7], starting with 
YOLOv1 in 2015, has seen continuous evolution, with 
YOLOv8 emerging as the latest advancement. YOLOv1 
introduced a groundbreaking one-pass regression approach for 
object detection, while subsequent versions like YOLOv5 
refined the architecture by incorporating anchor boxes. 
YOLOv8 builds upon this legacy, featuring a novel anchor-
free detection mechanism and leveraging a diverse training 
dataset for improved performance on a wide range of images. 

Selected for its assumed state-of-the-art status, YOLOv8 
demonstrates superior metrics, including higher mean average 
precision (mAP) and refined post-processing techniques like 
Soft-NMS. The model's training process involves meticulous 
steps, such as transfer learning with pre-trained COCO 
weights, model size optimization, and hyperparameter tuning. 
Despite a slightly reduced detection speed compared to 
YOLOv5, YOLOv8 maintains real-time processing 
capabilities on modern GPUs. 

Comprehensive evaluations, including challenging 
scenarios like detecting small objects and handling 
camouflage, highlight the model's adaptability. The refined 
model, achieved through transfer learning on a real-world 
dataset, showcases YOLOv8's robustness and effectiveness in 
various practical applications. In this project, YOLOv8 will be 
employed as the second solution to live tennis ball detection, 
relying on its robustness and ease of deployment to facilitate 
real-time object detection. 

F. Roboflow 

Roboflow [8], a comprehensive platform for computer 
vision, facilitates the entire lifecycle of building and deploying 
models, particularly specializing in object detection and 
labeling. Used by over 250,000 engineers, it offers a range of 
tools for creating datasets, training models, and deploying 
them into production environments. With a focus on 
streamlining workflows, Roboflow enables users to manage 
visual data, annotate images and videos, use foundation 
models, and deploy models both in the cloud and at the edge. 



The platform supports integration into various pipelines 
with open APIs, SDKs, and developer tools, making it 
adaptable to different applications. Users praise Roboflow for 
its user-friendly interface and powerful features, emphasizing 
its impact on improving labeling experiences and streamlining 
the computer vision model development process. The usage 
of Roboflow for this project can automate the tennis ball 
labeling pipeline, and significantly decrease the time and 
resources necessary to create a properly labeled dataset. 

III. METHOD EXPLANATION 

This project explores an introductory level understanding 
of fast-velocity small-area object tracking by applying cutting-
edge neural network models to live tennis videos presented by 
the ATP. The objective of this paper is to find a solution that 
can effectively predict the location of a tennis ball in contrast 
to its background as its speed is rapidly changing through the 
dynamic environment of a professional match. By 
successfully tracking the location of a tennis ball, it can be 
possible to gain an understanding as to how industrial deep 
learning applications work, such as automatic line calling 
systems. 

 This study employs an experimental research design to 
investigate two independent deep neural network architectures 
towards live object detection. It employs a computer-vision 
based approach to detect and localize tennis balls in images 
and video frames. This decision was motivated by the need for 
a robust solution to be applied to diverse environmental 
conditions and player actions. Object detection allows for the 
simultaneous localization and classification of tennis balls, 
providing rich information for subsequent analysis. 

A. Dataset Creation 

The first step in this experimental procedure is to obtain 
access to sufficient training data for the network architectures. 
To properly apply tennis ball detection across a diverge range 
of environments, it is important to have access to a diverse 
array of tennis ball images across different environments. For 
the purpose of simply detecting a tennis ball through the 
standard position of a camera through live broadcasting of 
matches by the ATP, it is important to have access to many 
different frames of training videos extracted into frames with 
tennis ball locations labeled. However, since this research is 
applied to subsequent analysis, it is also important to 
recognize the tennis ball pattern outside of a zoomed-out top-
down perspective. Therefore, the creation of the dataset 
consists of over 2000 images composed of both image frames 
from replayed matches, as well as generic stock images of 
tennis balls. This process will be explained further in the Data 
Acquisition section. 

B. Models 

To address the object detection challenge in this research, 
two prominent deep learning frameworks have been 
employed. These frameworks were chosen due to their proven 
effectiveness in handling object detection tasks and their 
distinct architectural characteristics. 

The first solution utilizes Mask R-CNN, which is 
renowned for its precise instance segmentation capabilities. 
This model was employed to provide pixel-wise localization 
of tennis balls. The model extends the Faster R-CNN 
architecture by incorporating an additional branch that 

predicts segmentation masks for each detected object. The 
utilization of Mask R-CNN aims to enhance the granularity of 
our object detection results. 

 

Figure 1: The Mask R-CNN model architecture for instance segmentation. 

Referenced via [9]. 

Additionally, the second solution utilizes YOLOv8, which 
is a state-of-the-art real-time object detection framework 
known for its speed and accuracy. YOLOv8 employs a single 
neural network to simultaneously predict bounding boxes and 
class probabilities for multiple objects within an image. The 
architecture divides the image into a grid and predicts 
bounding boxes with associated confidence scores for each 
grid cell. This real-time processing capability makes YOLOv8 
particularly well-suited for applications demanding low-
latency responses, such as tracking fast-moving objects in live 
tennis game scenarios. 

 

Figure 2: A brief summary of the YOLOv8 model architecture. Referenced 

via [10] 

The implementation procedure of both of these models is 
as follows. First, both frameworks were initialized with pre-
trained weights on general object detection datasets to 
leverage prior knowledge. Specifically, they were both 
initialized as checkpoints for a tuning process. The second 
step involves tuning these models through brute-force 
methods to optimize their performance for tennis ball 
detection. The results of this tuning process will be explained 
through the Experiment Settings section.  



Lastly, both models were deployed and ran through two 
independent sets: a validation set a test set. The validation set 
is composed of labeled images from both generic tennis balls 
and extracted frames from live matches. This way, the mAP 
can be algorithmically computed and compared. Moreover, 
the test set is consistent of purely extracted frames from tennis 
videos, and the precision was manually determined by 
individually observing each output frame and constructing a 
confusion matrix. 

C. Evaluation Metrics 

There are three evaluation metrics being used to compare 
the performance of these models. Each individual metric can 
provide a valuable insight to a specific detail presented by the 
results. However, each of these metrics will be measured using 
a confusion matrix, which is shown below. 

 

Figure 3: A confusion matrix stores the truth values through a classification 
algorithm. In this case, binary classification is employed, and each square 

represents either a correct or incorrect classification depending on its label. 

Referenced via [11]. 

Figure 3 represents a binary confusion matrix, which 
presents true negatives (TN), true positives (TP), Type I 
errors, and Type II errors. For the sake of explanation, assume 
that a binary classifier can label an object as “Positive” or 
“Negative.” 

• TN: The classifier labels an object as “Negative” that 
is truly “Negative.” 

• TP: The classifier labels an object as “Positive” that 
is truly “Positive.” 

• Type I Error: The classifier labels an object as 
“Negative” when it is really “Positive.” 

• Type II Error: The classifier labels an object as 
“Positive” when it is really “Negative.” 

There are two important equations that can be derived 
from a confusion matrix, which are shown below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑦𝑝𝑒 𝐼 𝐸𝑟𝑟𝑜𝑟 
 

Equation (1): Precision Score 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑦𝑝𝑒 𝐼𝐼 𝐸𝑟𝑟𝑜𝑟
 

Equation (2): Recall Score 

Precision is defined by Equation (1) and counts the total 
number of “Positive” labels that were made correctly against 
the total number of “Positive” labels assigned overall. 

Precision is a good metric to use when the cost of a Type I 
error is high. In this context, a Type I error is when an object 
is labeled as a tennis ball, but is not actually a tennis ball. 

Recall is defined by Equation (2) and counts the total 
number of “Positive” labels that were made correctly against 
the total number of “Positive” values that exist in the dataset. 
Recall is a good metric to use when the cost of a Type II error 
is high. In this context, a Type II error is when the object is 
not classified as a tennis ball, but actually is one. 

In the context of this research, precision is a more powerful 
metric to use. Making sure that a tennis ball is found always is 
important for integration into industrial applications such as 
automatic line calling, so making sure that an object is 
detected serves as the primary objective. Therefore, precision 
will be evaluated in different metrics for analysis.  

The first evaluation metric is mean average precision, or 
mAP. The mAP, or sometimes just AP, and can be computed 
algorithmically, which saves time on the computation step. 
Specifically, this study will focus on mAP@IoU=50%. 

mAP is the average of the precision values across different 
recall levels. Since this project only has one class, the mAP 
can be substituted with AP, which determines the average 
precision among all classifications. Intersection over union 
(IoU) is a threshold specifier for considering a detection as 
correct. If the IoU between the predicted bounding box and 
the ground truth is greater than or equal to 50%, then the 
detection is considered correct. 

mAP@IoU=50% provides an aggregated measure of how 
well the object detection model performs across different 
levels of recall, with a specific focus on bounding boxes that 
have at least a 50% overlap with the ground truth. Therefore, 
for mAP@IoU=50% to be completed, a validation set will 
need to be used. This metric will be computed using 30% of 
the training data, and comparing the predicted bounding box 
to the actual label. 

The second evaluation metric is total precision across all 
values in the test dataset. The test dataset will be composed of 
image frame extractions from live tennis videos, and 
sequentially fed into the network for analysis. By creating a 
confusion matrix for each network, it is possible to determine 
the precision score by referencing Equation (1). However, to 
create the confusion matrix, this will require manual work by 
labeling each “Positive” and “Negative” prediction as correct 
or incorrect. 

The third evaluation metric is total correct classifications 
across the test dataset. Through the previous step, a confusion 
matrix will be created. Therefore, the total number of correct 
classifications can be computed by the following equation. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠
 

Equation (3): Determine the correct number of classifications using a testing 

dataset’s confusion matrix. 

Thus, by calculating each of these scores, it can be 
comprehensively determined where each model is strong, and 
where any potential shortcomings may exist. 



IV. DATA ACQUISITION 

The primary objective of this project is to apply object 
detection to live professional tennis matches. In accordance 
with the ATP official rulebook – updated in 2021, Chapter 10, 
Exhibits 07 [12] – there is a tournament requirement to 
position a broadcasting camera along the back of a tennis court 
parallel to its sidelines. That way, a standardized recording 
format can be used for online viewership of these events.  

Therefore, the initial strategy towards data acquisition 
involved extracting frames from a diverse number of 
professional matches in various countries, spread across the 
three court surfaces: hard (concrete), clay, and grass. 
Approximately 1000 images were collected this way, but upon 
inspection, at a high resolution, tennis balls still only compose 
several pixels across the image at every given time. 

 

Figure 4: An example of an HD (1920x1080 pixels) frame taken from a 

professional tennis match. The ball represents a very small number of pixels 

taken above the net towards the center of the screen. Referenced via [13].  

 The training dataset employed in this project comprises 
two distinct clusters of images. The first cluster, exemplified 
by Figure 4, consists of 959 images extracted from video 
replays of professional ATP matches. This subset is further 
categorized into different court surfaces, being collected 
among hard courts, clay courts, and grass courts. The second 
set of training images consists of 1285 generic stock tennis 
ball images obtained from Adobe Stock [14]. In total, the 
training dataset encompasses 2244 images, with 30% of these 
images earmarked for validation purposes. 

 The next step in this process is image annotation, which is 
a crucial aspect of computer vision. It involves the meticulous 
process of labeling the boundaries of tennis balls within the 
training images, which provides the models necessary context 
to recognize and comprehend visual elements. In this context, 
effective image annotation is necessary for enhancing the 
accuracy and reliability of object detection algorithms. 

 As mentioned prior, there are over 2000 tennis ball images 
in the training dataset. Hence, automating the process became 
imperative, as manually labeling every image surpasses the 
limit of human energy. Therefore, several different strategies 
were used to streamline this process. 

 The first model of this annotation procedure used color as 
a primary discriminant for tennis ball identification. 
Introducing a color classification method rooted in the HSV 
color space, the algorithm was designed to delineate pixels 
corresponding to the color characteristics of tennis balls. 
Regrettably, this approach exhibited limitations, notably in 
misidentifying extraneous elements, as illustrated in Figure 5.  
Despite iterative adjustments to fine-tune the algorithm, it 

failed to yield results of sufficient proximity for practical 
deployment as an image labeling system, given the utilization 
of mAP@IoU=50% as the benchmark evaluation metric. 

 

Figure 5: An example of using color to localize tennis balls. 

 The second model used for this annotation procedure 
gravitated towards the Hough Circle Transformation. This is 
a technique used for detecting circular objects within an 
image, which can be transferred to detecting tennis balls. 
Operating on the principle of transforming the image space to 
a parameter space, the Hough Circle Transformation excels in 
recognizing circular patterns through the identification of 
relevant parameters, including the circle’s center coordinates 
and radius. However, as shown by Figure 6, this center 
coordinate detection presents errors when applied to diverse 
environments, and other regions of interest end up being given 
higher priority than the tennis ball during processing. After 
fine-tuning, the model could not successfully automate the 
tennis ball labeling process either. 

 

 

Figure 6: An example of using the Hough Circle Transformation to localize 
tennis balls. 

 The third attempt at solving this problem was deemed 
successful through the usage of Roboflow. Roboflow is an 
online neural network resource that provides tools for 
enhancing the image annotation process, involving the use of 
smart labeling tools trained on their connected networks. It 
empowers developers to easily create computer vision 
applications, without a dependency on code. It can be used for 
dataset annotation, preprocessing, transferring, exporting, and 
model training. 

 Firstly, several hundred stock images of tennis balls were 
labeled using the smart polygon tool. [15] This is an 
annotation assistant available through the Roboflow annotate 
program that uses a machine learning model to suggest a shape 
for the object being presented. It requires the user to mouse 



click the center of an object to be detected but can speed up 
annotation by removing the process of drawing boundaries 
around each object. Additionally, it allows for better fits by 
applying extra clicks inside and outside the suggested region 
to fine-tune the suggestion. 

 

 Figure 7: An example of using the smart polygon feature from 
Roboflow to localize tennis balls. 

 Second, Roboflow supports online model training, 
providing a valuable avenue for deployment in forthcoming 
projects, or unlabeled existing datasets – which can be applied 
to remainder of the tennis ball data. Leveraging this 
functionality, a fast object detection model was trained, 
yielding an impressive mean Average Precision (mAP) score 
of 94.0%, thereby streamlining the annotation process for the 
remaining tennis ball dataset. This transformative capability 
significantly reduced the annotation timeline from what would 
have been nearly impossible to a matter of several hours. 

 Nevertheless, a challenge persisted, stemming from the 
very small size of tennis balls within frames extracted from 
professional tennis matches, rendering them elusive for 
detection through the classifying model. Consequently, the 
solution involved the manual classification of all 959 images, 
accomplished with precision and efficiency utilizing 
Roboflow's advanced bounding box drawing tool. 

 

 

Figure 8: A bounding box drawn around a tennis ball during a professional 
tennis point using Roboflow’s bounding box annotation feature. 

 Through these methods, the complete labeling of all 2244 
images within this dataset was successfully achieved. Next, 
the dataset was split using a 70:15:15 ratio for the training, 
validation, and test sets, respectively. 70% of the images were 
split for training the model, 15% for the validation set to fine-
tune hyperparameters, and the remaining 15% for evaluation 
purposes in the testing set, employing the mAP@IoU=50% 
metric. It is noteworthy that Roboflow Universe [16] allows 
for online dataset reference via API calls in any live Jupyter 
Notebook file, a capability that proves particularly valuable 
when using Google Colab. [17]  Further details on this training 

process will be expounded upon in the Experiment Settings 
section. 

 Moreover, the other evaluation metric resides on manual 
observation of tennis ball classification through video data 
feed. Therefore, this testing dataset also needs to be created to 
allow evaluation of precision and correct classification 
percentage. Therefore, two entire points on hard courts, clay 
courts, and grass courts were extracted into 1729 images, 
which composes the video training set. After each model is 
deployed, they will be fed in each image frame as a sequence, 
and return the corresponding sequence with either a label 
drawn around one specific object, or no label drawn signifying 
the absence of a detection. 

V. PSEUDOCODE 

For the scope of this project, there are two main segments 
that can be explained through pseudocode: Mask R-CNN 
model implementation and YOLOv8 model implementation. 
Both frameworks rely on using a model checkpoint and fine 
tuning hyperparameters to transfer the classification task to 
tennis balls. By viewing each framework independently, an 
insight on their differences and strengths can be outlined. It is 
important to note that both models have been implemented 
through the use of Google Colab and its integrated T4 GPU. 

A. Mask R-CNN 

It is important to note that a detailed walkthrough of 
loading a Mask R-CNN checkpoint is provided by the official 
Google Colab tutorial of Detectron2. [18] By referencing this 
process, it is simple to transfer responsibility of the object 
detection to a custom dataset, as well as introduce sanity 
checks to ensure functionality is correct. Moreover, the first 
step in this implementation is to install detectron2, which can 
be done by the line of code below. 

!python -m pip install  

'git+https://github.com/facebookresearch/detectron2.git'  

Moreover, this implementation will be using PyTorch, 
[19] so it is important to import the required libraries, as 
shown below. 

import torch, detectron2  

The first step to train any network is to accumulate training 
data. This data has been labeled previously using Roboflow, 
and can be accessed by using an API call. Specifically, we can 
use the segment of code below to access the specific project. 
However, the API key is censored for security reasons. 

rf = Roboflow(api_key="______") 

project = rf.workspace("joshuaglaspey-n5m2m").project 

("tennis-ball-segmentation") 

dataset = project.version(1).download 

("coco-segmentation")  

 From here forward, the implementation will be described 
using pseudocode to illustrate the process. Once the dataset is 
locally downloaded (or saved to RAM if using Google Colab), 
it can be registered to the COCO database. This is necessary 
to call the datasets during training. As mentioned previously, 
the dataset has already been partitioned into three separate 
categories using a 70:15:15 split for training, validation, and 
testing.  



# Create names to represent file data 

TRAINING_DATA_NAME = "name to be registered to  

the COCO database" 

TRAINING_DATA_IMAGES_PATH = "local directory to  

the training data" 

TRAINING_DATA_ANNOTATIONS_PATH = "local directory  

to the training data annotation json file" 

 

# Register the data to COCO dataset 

register body to coco instances ( 

    name = TRAINING_DATA_NAME, 

    json file = TRAINING_DATA_ANNOTATIONS_PATH 

    image root path = TRAINING_DATA_IMAGES_PATH 

) 

 

# Repeat for Validation and Test sets  

 Now that the data has been imported into the project, it is 
time to import the checkpoint of the Mask R-CNN framework. 
This can be done through referencing the following 
configuration: 

• COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x 

COCO is included with the installation of detectron2, and 
includes loadable checkpoints for many different models, 
which includes Mask R-CNN as provided by the line above. 
Additionally, the following hyperparameters are configurable 
for this model. 

# Hyperparameters 

max_iterations 

evaluation_period 

base_learning_rate 

number_of_classes 

number_of_workers 

batch_size 

 

# Transfer checkpoint model 

model weights = "Mask R-CNN Configuration" 

model training data = TRAINING_DATA_NAME 

model validation data = VALIDATION_DATA_NAME 

model testing data = TESTING_DATA_NAME 

 

# Transfer the hyperparameters  

to the checkpoint model  

At this point, it is now a matter of training the model. This 
can be done by creating a Training object, and calling it to 
train the detectron2 configuration, which is visualized below. 

# Train the model 

trainer = Trainer(detectron2 configuration) 

trainer = Begin new train 

trainer.train()  

 Now, after waiting for the training process to complete, the 
Mask R-CNN model is completed. The mAP@IoU=50% can 
be evaluated using the method below. 

# Determine mAP through test data 

evaluator = new COCOEvaluator using TEST_DATA_NAME 

test_loader = loader using TEST_DATA_NAME 

print(stastics: 

        Model: detectron2 configuration 

        Loader: test_loader 

        Evaluator: evaluator 

    ) 

 

# The mAP will be displayed using this  

 Lastly, to create precision and total correct percentage 
metrics, the video testing set needs to be annotated using the 
model’s predictions. This can be implemented using the 
method below. 

# Register video testing data to COCO 

 

# Run predictions on the data 

for each image: 

    outputs = detectron2.predict(image) 

 

    # Filter detection based on threshold, and only  

display the highest 

    detections_above_threshold =  

outputs[all detections] > threshold_amount 

    if detections_above_threshold.any(): 

        highest_confidence_index = max 

(detections_above_threshold) 

 

    # Apply annotation 

    visualizer = new Visualizer object 

    output = visualizer.draw_prediction( 

outputs[all detections][highest_confidence_index]) 

    store annotated image to new file path 

    save the image 

 

# Download all images  

After implementing this code, uploading and registering 
the data sets, and executing the program, the 1729 video 
frames can be manually observed to construct a confusion 
matrix for performance interpretation. 

B. YOLOv8 

The YOLOv8 implementation through Google colab 
follows a similar structure to the Mask R-CNN 
implementation. It is more concise overall, but references data 
from Roboflow all the same. Therefore, the first step is to 
import the necessary libraries and data. 



!pip install ultralytics==8.0.196 

!pip install roboflow 

from roboflow import Roboflow 

rf = Roboflow(api_key="_________") 

project = rf.workspace("joshuaglaspey-n5m2m") 

.project("tennis-ball-detection-vmjer") 

dataset = project.version(5).download("yolov8")  

 Once the data is imported, Ultralytics, the creator of the 
YOLO framework, provides a simple method call for tuning a 
network. For this project, the call can be shown by the logic 
below. 

# Tune hyperparameters 

load YOLO "nano" model checkpoint 

model.tune(data = data.yaml,  

    Input hard-coded parameters here)  

 Once the model.tune() function is called, the best 
hyperparameters are stored to a file with the name: 
“best_hyperparameters.yaml.” Therefore, by combining these 
hyperparameters with the data file that contains training, 
validation, and testing image directories, it is possible to 
automate the tuning process to feed hyperparameters into the 
model to be trained. 

 This can be shown by the logic below. 

# Function to take the paramaters of a tuned model  

# and import them to the .yaml file of the dataset 

def move_yaml_contents(): 

 

  # Path to the first YAML file 

  file1_path = "best_hyperparameters.yaml" 

 

  # Path to the second YAML file 

  file2_path = "data.yaml" 

 

  Read the contents of the first YAML file 

 

  Save it to a buffer 

 

  Append the contents of the first YAML file  

  to the second YAML file using the buffer  

 Moreover, once the data file has been setup, it is now 
possible to train the YOLOv8 network. Once again, this is 
simplified using Ultralytics’ YOLO model function calls, 
where the logic is shown below. 

load YOLO "nano" model checkpoint 

move_yaml_contents() 

 

# Train the YOLO model 

!yolo  

    task=detect  

    mode=train  

    model=yolov8n.pt    

    data=data.yaml  

 From this point, the model is trained. Now it is a measure 
of determining the three metrics. 

 The first metric, mAP@IoU=50% can be determined 
using a validation function provided by Ultralytics. This is 
shown below. 

!yolo  

    task=detect  

    mode=val  

    model=best weights model 

    data=data.yaml  

 Lastly, to determine the precision and correct 
classification percentage, the code imports an additional 
unlabeled dataset and runs a prediction task on it. Once again, 
this is simplified to one line of code.  

!yolo  

    task=detect  

    mode=predict  

    model=best weights model 

    confidence threshold=some value 

    source=unlabeled images  

 Thus, the final steps are to download and observe all of the 
images to construct a confusion matrix. 

VI. EXPERIMENT SETTINGS 

The experiment involves having a fine-tuned 
configuration to produce optimal results in the realm of tennis 
ball detection.  

A. Dataset 

The training dataset is consistent of two groups of images. 
The first group is comprised of generic tennis ball stock 
images across diverse environments. This way, the tennis 
ball’s color and pattern can be learned against different colors 
and shapes in the background. Additionally, it is also 
consistent of frames taken from professional points. These 
images, as shown by Figure 4, are zoomed out, and each tennis 
ball makes up several pixels across an HD image. All of the 
stock images are standardized to the same 256x256 resolution, 
and all of the video frames are default exported at 1920x1080 
pixels. There is a total of 2244 images, 70% of which have 
been designated for training. Therefore, 1570 images are 
within the training dataset. 

The validation and testing datasets are consistent of the 
same types of data as the training dataset – tennis ball stock 
images and video frames from professional points. Each of 



these sets contains 15% of the dataset pool, so both of these 
sets contain 337 images. 

The testing dataset will be used to determine the mAP for 
each model. Both implementations contain an algorithmic 
method for determining model performance, which includes 
the mAP@IoU=50% metric. 

An additional testing dataset, known as the video testing 
dataset, will be consistent of 1729 extracted frames from six 
different tennis points. Two of these points will be on hard 
courts, two on clay courts, and two on grass courts. This data 
will be fed into each deployed network, and the number of 
correct and incorrect classifications will be manually counted 
and constructed into a confusion matrix. 

B. Machine Configuration 

Both of these networks are deployed through Google 
Colab. Therefore, the machine performance is dependent on 
the resources provided by this environment. For this 
implementation, it is necessary to use a CUDA-enabled GPU, 
which can be accessed via Google Colab’s Tesla T4 GPU. 
[20] This GPU features: 

• 2560 CUDA cores 

• 320 Tensor cores 

• 16GB of GDDR6 memory 

• 320GB memory bandwidth 

This information makes the Tesla T4 GPU a strong resource 
to be used for training these networks. 

C. Parameters 

Each individual framework features specific hyperparameters 
that can be used to boost the performance of their deployed 
networks. A list for each of these is shown below. 

a) Mask R-CNN 

• Maximum number of iterations: 2000 

• Evaluation period: 200 

• Base learning rate: 0.001 

• Number of classes: 1 

• Weights: Load from “mask_rcnn_R_101_FPN_3x” 

checkpoint 

• Batch size: 64 

• Number of workers: 2 

• Instances per batch: 2 

• Mask format: “bitmask” 

 

b) YOLOv8 

• Epochs: 50 

• Learning rate: 0.00801 

• Learning rate factor: 0.00787 

• Momentum: 0.88389 

• Weight decay: 0.00058 

• Warmup epochs: 4.38397 

• Warmup momentum: 0.95 

• Box localization: 6.84435 

• Classification loss coefficient: 0.27659 

• Dynamic feature learning coefficient: 1.78844 

• HSV Hue: 0.01879 

• HSV Saturation: 0.6589 

• HSV Value: 0.4689 

• Degrees: 0 

• Translation: 0.08389 

• Scale: 0.47946 

• Shear: 0 

• Perspective: 0 

• Flip up-down: 0 

• Flip left-right: 0.4642 

• Mosaic: 1.0 

• Mixup: 0 

• Copy/paste: 0 

VII. EXPERIMENTAL RESULTS 

Initially, the experimental procedure followed this original 
structure: 

1. Research state-of-the-art deep neural network 
models that excel in object detection. 

2. Use a collection of back-perspective tennis videos 
along with stock images of tennis balls to train the 
networks with diverse inputs. 

3. Perform metric calculations on the models 
algorithmically. Specifically, determine the 
mAP@IoU=50%. 

4. Input a frame sequence from live tennis points and 
manually determine the precision of each model. 

A. Mean Average Precision 

For the experimental results, the first metric to be 
determined is the mAP@IoU=50% score. Using the 
algorithms provided by both detecton2 and YOLO, it is 
possible to algorithmically determine this metric using the 
same testing dataset. This way, since both models have been 
trained, validated, and tested using the same images, bias can 
be minimized. 

The results of the mAP@IoU=50% analysis are shown by 
Table 1. By direct comparison, Mask R-CNN’s model 
outperformed YOLOv8 in terms of average precision using an 
IoU threshold of 50% by 45%. In other words, on average, the 
Mask R-CNN model could predict a tennis ball’s region with 
at least 50% confidence in 45% more circumstances than the 
YOLOv8 model. 

Mean Average Precision of the Two Frameworks 

Framework mAP@IoU=50% 

Mask R-CNN 0.787 

YOLOv8 0.541 

Table 1: The algorithmic collection of mAP@IoU=50% for each framework. 
Detectron2 and YOLO provide built-in methods for computing these 

values given an annotated dataset. 

However, this metric is used to determine overall model 
quality in all circumstances. For a combination of stock tennis 
ball images and back-perspective professional tennis point 
frames, these values are calculated. That means, in the general 
application, Mask R-CNN is the stronger selection. 



B. Difficulties with Original Precision Metric 

Moving forward, to apply these frameworks to live tennis 
matches, it is important to understand the precision score 
when taken from the perspective of a camera positioned on the 
perimeter of the tennis court.  

Originally, the plan for determining precision was to 
reference six unlabeled tennis points – two from hard courts, 
two from clay courts, and two from grass courts – and allow 
each model to predict the tennis ball in 1729 extracted frames. 
Then, using manual labor, each image would be observed, and 
a confusion matrix would be constructed. 

However, after applying this method to both trained 
models, the results were diminishing. Table 2 summarizes 
these results for one point analyzed by each model. Every 
frame was not analyzed due to the burden of limited 
manpower, and once the results began accumulating, finishing 
the procedure was deemed inconclusive. 

Object Detection Applied from Back-Perspective Viewpoint 

Framework Total Frames 
Total Frames with a 

Detected Tennis Ball 

Mask R-CNN 263 94 

YOLOv8 332 6 

Table 2: The number of correctly classified frames given a distinct input of 
a different tennis point for each framework. The totals did not yield 

strong results, so this presented questions towards the setup of the 

procedure. 

Mask R-CNN was able to classify the tennis balls at a 
higher percentage level, but overall, neither model produced 
results nearly up-to-par as to what they each sell as. After 
investigating, the most likely cause for this is the format in 
which the input data is acquired. It is a popular topic for high 
velocity low area object detection in the case of using deep 
neural networks, but the provided input data is in HD format 
(1920x1080 pixels). In each frame, the tennis ball contains a 
radius of two to five pixels overall. This essentially blurs it 
into the background and makes it no more apparent than many 
regions proposed by the background.  

 

Figure 9: An HD (1920x1080 pixels) frame taken from a professional 
tennis match. The ball, positioned over the far tennis player, is nearly 

impossible to see from this resolution, making it difficult for a computer to 
perform essential training from this data. 

In fact, there are a couple of reasons as to why, despite the 
tennis ball being as easy to watch from a broadcasting 
perspective, the tennis ball is impossible to locate from a still 
image as shown by Figure 9. Firstly, the human brain can 
detect motion tracking. Hyönä [21] references motion tracking 
using human eyes in terms of saccades, which are rapid, 
involuntary eye movements. The human visual system is 

adept at following moving objects through a series of saccadic 
eye movements, allowing for continuous tracking of the 
object’s trajectory. This inherent capability of the human eyes 
to engage in motion tracking aids in real-time perception, 
which is a vast benefit to the limitations of the current setup 
for this project. 

The limitations of still images in capturing the essence of 
motion tracking becomes evident through the use of a tennis 
ball. A single image, as shown by both frameworks, fails to 
convey the temporal aspect of the ball’s movement and the 
dynamic interplay of forces involved. Motion tracking using 
human eyes involves not only the ability to smoothly follow 
the movement of an object, but also to predict its future 
location based on visual cues. Still images lack the temporal 
dimension required for accurate motion tracking, making it 
challenging for observers to precisely locate the tennis ball’s 
position at a given moment. 

Secondly, humans have the benefit of binocular vision, 
which contributes to depth perception. Boyd [22] explains 
binocular vision as the utilization of input from both eyes of a 
human. By nature, this is a limitation of the current project, as 
the input is the result of a single camera feed. Using two inputs 
enables depth perception through convergence, where each 
eye captures an object from slightly different angles. The brain 
integrates these perspectives – a process known as stereopsis 
– providing a three-dimensional understanding of the 
environment. This binocular advantage proves essential in 
accurately tracking moving objects, especially in the context 
of a small tennis ball. 

Conversely, individuals with monocular vision may 
encounter challenges in depth perception, lacking the 
stereoscopic input of binocular vision. While it is possible for 
prolonged monocular vision individuals to adapt, their depth 
perception differs. This is the problem faced by using a one-
camera system for observing a tennis ball: there is no direct 
implementation of depth perception. This makes spatially 
tracking the small object difficult as it is presented with such 
a small area. 

Thirdly, humans rely on cognitive processing, which is the 
processes of the human brain filtering out irrelevant 
information to focus on the most salient aspects of a scene. 
Zhao [23] studies cognitive processing for object tracking 
with multiple features. When tracking a tennis ball, the brain 
engages in this to prioritize and selectively attend the critical 
features of a ball while disregarding distracting background 
details. The challenge arises for these frameworks because the 
tennis ball is only several pixels in size, and its visual 
representation may align with various features in the 
background. 

This task becomes even more challenging when the visual 
environment is dynamic, with changing background and 
lighting conditions between facilities. The brain must 
continuously adapt its cognitive process to ensure that it 
accurately tracks the ball’s movement, even when it aligns 
with various background features. Despite these challenges, 
the human visual system demonstrates a remarkable ability to 
filter out irrelevant information and focus on crucial elements. 
This is a limitation of this current project, as not having a 
cognitive process system yields setbacks on understanding 
changes in the environment and not attributing the small tennis 
ball region to other unrelated areas.  



C. Refined Precision Metric for Object Detection 

Thus, considering all of the factors of the original method, 
it is worth noting that, to stay true to the original objective of 
this project, it is unwise to train new networks. Rather, it is 
imperative to change the means at which the unlabeled input 
data is presented. Due to the nature of HD images, the scale of 
a tennis ball is too small to properly be analyzed by deep 
neural networks that have not been trained with prediction 
calculations or binocular vision. However, this project’s scope 
is to provide accurate tennis ball tracking during professional 
match play from the perspective of the cameras along the 
peripheral of the court. 

As mentioned prior, the ATP positions cameras along the 
entire perimeter of the tennis court to track the tennis ball’s 
location at all times. This is used for automatic line calling, as 
well as other topics. Thus, rather than provide the video feed 
from a zoomed-out backwards perspective, it is possible to use 
zoomed-in replays of points to accurately track the tennis 
ball’s location. After a tennis point is completed on a live 
broadcast, the final couple swings are replayed while zooming 
in on the tennis player and the ball. This drastically increases 
the size of the tennis ball within the input image, as shown by 
Figure 10.  

 

Figure 10: An HD (1920x1080 pixels) taken from a replay of a live 
professional tennis match. The tennis ball is large because the camera is 
zoomed in to replay a specific shot from the last point. 

Therefore, by using these zoomed-in videos, it is possible 
to redeploy each of the two frameworks to a new collection of 
1814 unlabeled frames. Therefore, the new project procedure 
is shown below: 

1. Research state-of-the-art deep neural network 
models that excel in object detection. 

2. Use a collection of back-perspective tennis videos 
along with stock images of tennis balls to train the 
networks with diverse inputs. 

3. Perform metric calculations on the models 
algorithmically. Specifically, determine the 
mAP@IoU=50%. 

4. Input 1814 extracted frames from replays of live 
professional tennis points, and manually construct 
feature matrices from the results. 

D. Precision 

Each network is trained using the collection of 1570 
combined back-perspective images extracted from 
professional tennis points and generic stock images of tennis 
balls. Then, using these models, 1814 extracted frames from 
replays of live professional tennis points can be used as inputs 

for object prediction. An example of successful predictions 
can be shown by Figures 11 and 12. 

 

Figure 11: A successful detection of a tennis ball using Mask R-CNN. 

 

Figure 12: A successful detection of a tennis ball using YOLOv8. 

The confusion matrices for both frameworks are shown by 
Figures 13 and 14. To reiterate, these matrices were computed 
using manual labor, as the data is unlabeled and presents no 
algorithmic method to determine precision nor correct 
classifications. 

 

Figure 13: The confusion matrix for the classification results determined by 
the Mask R-CNN model. 

 

Figure 14: The confusion matrix for the classification results determined by 
the YOLOv8 model. 



For this study, it is imperative to understand the 
implications of a Type I and Type II error. The Type I error, 
signified by the false positive total, is when an object is labeled 
as a tennis ball, but is not actually a tennis ball. The Type II 
error, signified by the false negative total, error is when the 
object is not classified as a tennis ball, but is a tennis ball. It 
has been established that precision will be utilized because the 
objective of this project is to ensure that the tennis ball is 
tracked for the entire duration of the input video. Therefore, 
for precision, the false positive proportion to total positive 
classifications will be analyzed. 

On a separate note, each of these two models exhibits 
distinct behaviors. For the Mask R-CNN model, there is a 
large number of false positives, signifying that frequently the 
framework selected a separate region of interest as what it 
believed to be a tennis ball. This occurred nearly one-third of 
the total positive classifications. Moreover, there was almost 
never an unclassified frame, as there were only 91 total 
negative classifications.  

The YOLOv8 model exhibited nearly opposite behavior. 
There is a much smaller quantity of false positive 
classifications in comparison to the Mask R-CNN model, but 
as a proportion to overall positive classifications, it makes up 
about a fifth of the total. Furthermore, there were only 527 
positive classifications, which is diminishing in comparison to 
the 1724 positive classifications of the Mask R-CNN model, 
and of the 1814 total frames used as input. Conversely, there 
were 1288 negative classified frames, where 1187 of those 
were made incorrectly. In other words, in 1187 frames 
extracted from live replays, there was no tennis ball detected 
when a tennis ball was present. 

Moving on, using Equations 1 and 3, it is possible to 
determine the precision and correct classification percentage 
of these two models. These results are shown in Table 3. 

Precision and Correct Classification Percentage of the Two 
Frameworks 

Framework Precision 
Correct Classification 

Percentage 

Mask R-CNN 0.676 67.49% 

YOLOv8 0.806 28.98% 

Table 3: The precision and correct classification percentages of both Mask 
R-CNN and YOLOv8. These metrics were calculated using the results 

of their respective confusion matrices. 

As shown by the results, in terms of precision, YOLOv8 
has stronger results. In approximately four out of five 
positively classified images, the YOLOv8 model will output 
the tennis ball as the highest confidence prediction. Regarding 
Mask R-CNN, approximately two out of three frames will 
have the tennis ball given the highest confidence prediction. 
In terms of ensuring correctness, YOLOv8 is the stronger 
model. 

However, in terms of the number of frames correctly 
classified, Mask R-CNN is the heavy favorite. In 
approximately two-thirds of the images, this model either 
correctly classified a tennis ball as in the image, or correctly 
did not classify anything because a tennis ball is missing. 
However, the YOLOv8 produced poor results on this topic. 
Only approximately 29% of the images sent through the 
model were classified correctly. This can be attributed to the 
large false negative total present in Figure 14. 

VIII. DISCUSSION 

The initial analysis focused on algorithmically 
determining the mAP@IoU=50%. Using detectron2 and 
YOLOv8, this metric was computed, revealing that Mask R-
CNN outperformed YOLOv8 by 45% of generic tennis ball 
detection cases. These results imply that, in a general 
application with diverse inputs, Mask R-CNN stands out as 
the stronger choice. 

Separately, the attempt to assess precision from a back-
perspective viewpoint using six unlabeled tennis points 
encountered challenges. Both Mask R-CNN and YOLOv8 
yielded inconclusive results due limitations of the project 
setup and input data resolution. Therefore, to address these 
limitations, which are outlined in Section 7.B, the project 
adopted a refined method of accumulating precision. Instead 
of training new networks, the focus shifted to using zoomed-
in replays of live professional tennis points to enhance the 
visibility of the tennis ball. This approach aimed to present a 
more realistic scenario for the models, as well as allow for 
feasible object detection given HD (1920x1080 pixels) 
images.  

Using this refined process, the Mask R-CNN and 
YOLOv8 models predicted tennis balls across a new 
unlabeled data set of 1814 frames. Precision and correct 
classification percentages were computed from their 
confusion matrices. 

While YOLOv8 showcased a higher precision metric, 
meaning that a larger proportion of its positive classifications 
were accurate, Mask R-CNN emerged as the frontrunner in 
terms of correctly classifying a tennis ball overall. The balance 
between precision and consistency is a critical consideration, 
as it determines the effectiveness of each of these models in 
different scenarios. 

In terms of precision, YOLOv8 demonstrated a high 
precision of 0.806, indicating that when it predicted the 
presence of a tennis ball, it was correct 80.6% of the time. This 
is beneficial in the scope of correctness, as YOLOv8 was 
stronger in making sure that the highest confidence region of 
interest was the tennis ball and not an arbitrary section of the 
background. 

In terms of correct classification percentage, Mask R-CNN 
excelled in classifying a larger number of frames correctly. In 
67.5% of the frames, the model either correctly identified a 
tennis ball or correctly refrained from making a prediction 
when a tennis ball was absent. This metric is critical in 
ensuring tracking is consistent. 

It would originally seem that YOLOv8 would be the 
preferred model for this problem, as it yields a high precision 
score. However, the very small overall correct classification 
makes the model unusable for industrial applications. The 
Mask R-CNN model also suffers from the fact that it tends to 
attribute a separate section of the background to being the 
tennis ball rather than the actual tennis ball. Thus, this model 
also suffers in accuracy, and could not be deployed 
industrially. However, this falls to the setup of the project, and 
future ways to better this process are explored in the Future 
Works section. 

Overall, the Mask R-CNN model is preferred from these 
results. The goal of this project is to ensure a comprehensive 
and accurate tracking of the tennis ball, while also consistently 
having it detected. The Mask R-CNN does not fall far behind 



YOLOv8’s precision, and far excels in correctness. Its ability 
to classify a higher percentage of frames implies a more 
reliable performance in scenarios where the tennis ball might 
be challenging to detect due to its small size and dynamic 
backgrounds. 

IX. CONCLUSION 

In this research process, the application of deep neural 
network models, specifically Mask R-CNN and YOLOv8, 
was explored for the challenging task of object detection in 
live professional tennis matches. The project aimed to track 
tennis balls in real-time, following the ATP’s guidelines for 
camera placement and considering the diverse conditions of 
different court surfaces. 

The evaluation began with the acquisition of data. The 
project utilized HD images of the back-perspective viewpoint 
of live professional tennis points, as well as generic stock 
images of tennis balls as the training data collection. This 
allowed for generalization of the data, as well as knowledge 
for detecting the tennis ball in a live point scenario. The 
models were tested using unlabeled data from zoomed-in 
replays. 

The first metric determined was mAP@IoU=50% for both 
models. The results indicated that Mask R-CNN outperformed 
YOLOv8 by 45%, suggesting its superiority in generic tennis 
ball detection across diverse scenarios. 

However, when transitioning to a more practical scenario 
involving the back-perspective viewpoint commonly used in 
live broadcasts, both models faced challenges. The original 
precision metric, determined by manual observation of six 
unlabeled tennis points, provided inconclusive results. 
Limitations arose from the small size of tennis balls in HD 
images, lack of motion tracking, monocular vision constraints, 
and the absence of cognitive processing akin to human visual 
systems. 

Recognizing these limitations, a refined approach was 
adopted, utilizing zoomed-in replays of live professional 
tennis points. This sought to enhance the visibility of the 
tennis ball and present a more realistic input scenario. The 
subsequent precision and correct classification analyses 
produced nuanced insights into the models’ performance. 

While YOLOv8 exhibited a higher precision, indicating 
more accurate prediction when a tennis ball was detected, 
Mask R-CNN excelled in overall correctness. Mask R-CNN 
demonstrated its ability to classify a larger number of frames 
correctly, ensuring a more reliable performance in scenarios 
where detecting the small-sized tennis ball amid dynamic 
backgrounds proved challenging. 

Considering the project's objective of comprehensive and 
accurate tennis ball tracking during professional matches, 
Mask R-CNN emerged as the preferred model. Despite its 
tendency to attribute separate sections of the background as 
tennis balls, its higher correct classification percentage and 
balance between precision and consistency make it more 
suitable for industrial applications where reliable tracking is 
imperative. 

In conclusion, this study contributes valuable insights into 
the complexities of deploying deep neural network models for 
real-time object detection in professional tennis matches. The 
findings underscore the importance of considering 

specificities in camera perspectives and image resolutions for 
effective model deployment in dynamic sports environments. 

X. FUTURE WORKS 

This research lays the foundation for further exploration in 
refining object detection models for live tennis match 
scenarios. As discovered by the original precision metric 
calculations, many factors can be weighed into the unlabeled 
data acquisition process. Being restricted to one zoomed-out 
camera and only HD image frames made the object detection 
problem struggle with accuracy. There are ways to address 
this problem so that the original broadcasted angle can be 
used, and successful tracking may be implemented. 

One promising avenue for future research is incorporating 
motion tracking capabilities into the object detection models. 
The human visual system’s ability to engage in motion 
tracking provides an extra dimension to real-time perception. 
Integrating motion tracking algorithms into deep neural 
networks can enhance the models’ understanding of the 
temporal aspect of the tennis ball’s movement. Exploring and 
adapting existing motion tracking techniques for object 
detection in dynamic sports environments could significantly 
improve the model’s predictive capabilities. 

To ensure the continuity and realism of tennis ball 
tracking, future works could explore methods to incorporate 
motion tracking data for predicting the subsequent ball 
location. By leveraging the information from the motion 
tracking algorithms, the models can make predictions that are 
not unreasonably far from the previous frame’s detection. This 
approach aims to emulate the human visual system’s ability to 
anticipate an object’s future location based on its trajectory. 
Implementing predictive elements into the models would 
contribute to more accurate and consistent tennis ball tracking. 

Moreover, expanding the data acquisition setup to include 
more than one camera could address the depth perception 
challenge outlined in the limitations. Drawing inspiration 
from the human binocular vision system, utilizing multiple 
cameras placed around the tennis court, similar to the ATP’s 
guidelines on camera placements, can provide distinct 
perspectives, allowing for convergence and stereopsis. This 
binocular advantage contributes to enhanced depth 
perception, potentially making it easier for the models to 
spatially track the small tennis ball accurately. 

Additionally, the insights gained from this research can be 
extrapolated to other domains facing challenges in fast-
velocity, small area detection. By transferring the knowledge 
and methodologies developed for tennis ball tracking to 
similar scenarios, such as other sports or robotics, the 
applicability and effectiveness of the models can be extended. 
This cross-disciplinary approach could open avenues for 
advancements in real-time object detection in diverse fields 
where precision and speed are critical. 
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