

Tennis Ball Detection in Live Professional Tennis

Matches: A Comparative Study of YOLOv8 and

Mask R-CNN for Precision

Joshua Glaspey

College of Engineering and Computer Science

University of Central Florida

Orlando, FL, USA

joshua.glaspey@ucf.edu

Abstract—Object detection is a core domain within machine

learning. It encounters unique challenges when applied to

sports, particularly when it is applied to swing motions –

particularly with swiftly moving, small area objects. This

research focuses on the specific task of tennis ball detection

within frames of professional matches. Tennis balls, with their

diminutive size and speeds exceeding 100 miles per hour,

demand precise localization. The methodology involves

collecting training and testing data, including over 2000

combined images of generic tennis ball images and frames

extracted from professional points sourced by the Association of

Tennis Professionals (ATP). Two separate solutions will be

studied: Mask R-CNN and YOLOv8. Both of these models aim

to address the challenges posed by the distinctive characteristics

of tennis balls. While the study pushes questions to be further

addressed, its significance lies in contributing insights to the

effectiveness of these different models towards high velocity

object tracking.

Keywords—tennis ball, object detection, CNN, Mask R-CNN,

YOLOv8, precision, computer vision.

I. INTRODUCTION

In the recent years, the intersection of computer vision and
sports analytics has produced considerable advancements,
transforming the way we perceive and engage with live
sporting events. One intriguing application within this domain
is the detection of sports objects, a subset of object detection
tasks in machine learning. This research emphasizes the
importance of being able to maintain consistent tracking of an
object with a high velocity and low area across live video feed.

Object detection, a popular feat of computer vision, has
witnessed extensive exploration and innovation. Particularly,
sports ball detection introduces unique challenges, as it
demands the identification of objects identified by high
velocities and small sizes. This paper covers the investigation
of the complex object detection problem during live
professional match play. Tennis balls, with a surface area of
approximately 19.63 square inches, travel across the court at
speeds varying to over 100 miles per hour. The intrinsic
difficulty of this task lies not only in the size and speed of the
tennis balls but also in the dynamic nature of live tennis
matches.

The primary objective of this research is to leverage
current state-of-the-art deep neural network algorithms to
develop robust solutions for tennis ball detection within image
frames. Successful implementation holds immense potential

for advancing sports technology, providing tools that can
contribute to a deeper understanding of real-time tennis court
line calling systems.

The training and evaluation of the proposed solutions rely
on carefully curated datasets, composed of both training and
test data. The collection process is extensive, involving
gathering images of tennis balls and splitting tennis videos
into collections of frames. To assess the performance of the
developed models, the research adopts a binary classification
approach, categorizing predictions into “yes” or “no”
evaluations. Evaluation metrics such as precision and mean
average precision (mAP) provide a comprehensive analysis of
the models’ effectiveness in capturing tennis ball instances.

This paper presents two distinct solutions for tennis ball
detection: Solution 1 uses the Mask R-CNN architecture,
while Solution 2 uses the YOLOv8 architecture. Each solution
undergoes a meticulous development process, including data
manipulation to enhance the model’s training. The results are
subsequently analyzed using the metrics listed prior.

Overall, this research draws inspiration from existing
studies, incorporating methods and strategies from recent
works on tennis ball recognition using deep learning
algorithms. By comparing the performance of Mask R-CNN
and YOLOv8 CNN, this study aims to contribute valuable
findings to the evolving landscape of object detection within
the realm of professional sports.

Personally, I am interested in researching this topic due to
my attachment to the sport. I have been an active tennis player
for over 13 years as of this report’s creation, and practice it
actively. I also keep up with the professional scene, which
inspired me to ask questions about the design of professional
tennis’ automatic systems, including line calling. There are
many cameras placed around the court to capture all the angles
of every tennis shot, including finely tracking its exact
location when landing. Being able to actively detect tennis
balls is industrially applied, and performing this research can
provide an insight to the methodology employed for this task.

II. RELATED WORK

A. Color and Contour Classification of Tennis Balls

The tennis ball detection landscape encompasses a variety
of methodologies with one notable approach relying on color-
based recognition and contour analysis. [1] Employing a
recognition algorithm grounded in the Hue, Saturation, and

Value (HSV) color space, a robotic system can be applied to
segment pixels exhibiting a distinct color characteristic. The
subsequent application of a Hough circle transformation [2]
accentuates the round contour of the objects within the image.
This dual strategy involves both color and contour features to
detect tennis balls during optimal camera conditions, which is
relevant to that presented during live feed by the ATP.
However, this approach presents challenges with scenarios
involving background colors resembling tennis balls or
potential misclassifications of irrelevant items in the
background.

B. TrackNet

TrackNet [3] leverages an extensive dataset sourced from
the broadcast video of the tennis men’s singles final at the
2017 Summer Universiade, focusing on the development and
evaluation of the TrackNet framework for tennis ball detection
and tracking. While this study primarily centers on tennis, its
methodology draws inspiration from Archana’s algorithm [4],
which is an image processing technique. Archana’s approach
serves as a benchmark for comparison, emphasizing the shift
towards deep learning networks for improved object
detection. The dataset itself comprises 20,844 frames with
labeled attributes. Additionally, evaluation is extended to the
challenging domain of badminton, demonstrating the
network’s adaptability to other domains. This research project
sheds light onto high velocity object tracking, which is
explored throughout this research paper.

C. Region Proposal Network

Convolutional neural networks (CNNs) form the
foundational architecture for many computer vision tasks,
including object detection. These neural networks are
specifically designed to process and analyze visual data by
leveraging convolutional layers. Convolutional operations
involve the application of filters or kernels to input images,
extracting features hierarchically. These features are learned
through the network's training process, enabling the model to
recognize patterns such as edges, textures, and more complex
visual elements. The use of pooling layers helps reduce spatial
dimensions, focusing on essential information. CNNs have
proven highly effective in image-related tasks, providing the
groundwork for subsequent advancements in object detection
methodologies like Faster R-CNN.

The Faster R-CNN [5] architecture introduced Region
Proposal Networks (RPN) to enhance the speed of detection
frame generation, a critical advantage over traditional
methods. RPN consists of two key components: anchor
generation and bounding box regression. Anchors,
representing candidate boxes at each sliding window position,
are classified and refined through Softmax and bounding box
regression, respectively. The proposal layer synthesizes
positive anchors and their corresponding regression offsets,
producing recommendations while eliminating unsuitable
proposals. The RPN structure significantly improves the
efficiency of generating detection frames compared to
methods like selective search employed by traditional CNN
models.

D. Mask R-CNN

Mask R-CNN [6] is an extension of the Faster R-CNN
framework, designed specifically for instance segmentation
tasks. It maintains the two-stage process of Faster R-CNN,

featuring a Region Proposal Network (RPN) for candidate
object boxes and a second stage for classification and
bounding-box regression. What sets Mask R-CNN apart is the
introduction of a third branch dedicated to generating binary
masks for each Region of Interest (RoI), providing detailed
spatial information for object instances.

During training, Mask R-CNN employs a multi-task loss
function for each RoI, combining classification loss,
bounding-box loss, and mask loss. The mask branch produces
pixel-wise predictions, ensuring pixel-to-pixel
correspondence and employing the RoIAlign layer to
accurately align features within RoIs. This layer uses bilinear
interpolation to address quantization issues and preserve
spatial layout fidelity.

The flexibility of Mask R-CNN is highlighted through its
compatibility with various backbone architectures, such as
ResNet, ResNeXt, and Feature Pyramid Network (FPN). The
framework achieves state-of-the-art performance in instance
segmentation, outperforming other models on datasets like
COCO. Mask R-CNN will be employed as the first solution
for the tennis ball detection task, utilizing a dataset registered
through COCO.

E. YOLOv8

The YOLO (You Only Look Once) series [7], starting with
YOLOv1 in 2015, has seen continuous evolution, with
YOLOv8 emerging as the latest advancement. YOLOv1
introduced a groundbreaking one-pass regression approach for
object detection, while subsequent versions like YOLOv5
refined the architecture by incorporating anchor boxes.
YOLOv8 builds upon this legacy, featuring a novel anchor-
free detection mechanism and leveraging a diverse training
dataset for improved performance on a wide range of images.

Selected for its assumed state-of-the-art status, YOLOv8
demonstrates superior metrics, including higher mean average
precision (mAP) and refined post-processing techniques like
Soft-NMS. The model's training process involves meticulous
steps, such as transfer learning with pre-trained COCO
weights, model size optimization, and hyperparameter tuning.
Despite a slightly reduced detection speed compared to
YOLOv5, YOLOv8 maintains real-time processing
capabilities on modern GPUs.

Comprehensive evaluations, including challenging
scenarios like detecting small objects and handling
camouflage, highlight the model's adaptability. The refined
model, achieved through transfer learning on a real-world
dataset, showcases YOLOv8's robustness and effectiveness in
various practical applications. In this project, YOLOv8 will be
employed as the second solution to live tennis ball detection,
relying on its robustness and ease of deployment to facilitate
real-time object detection.

F. Roboflow

Roboflow [8], a comprehensive platform for computer
vision, facilitates the entire lifecycle of building and deploying
models, particularly specializing in object detection and
labeling. Used by over 250,000 engineers, it offers a range of
tools for creating datasets, training models, and deploying
them into production environments. With a focus on
streamlining workflows, Roboflow enables users to manage
visual data, annotate images and videos, use foundation
models, and deploy models both in the cloud and at the edge.

The platform supports integration into various pipelines
with open APIs, SDKs, and developer tools, making it
adaptable to different applications. Users praise Roboflow for
its user-friendly interface and powerful features, emphasizing
its impact on improving labeling experiences and streamlining
the computer vision model development process. The usage
of Roboflow for this project can automate the tennis ball
labeling pipeline, and significantly decrease the time and
resources necessary to create a properly labeled dataset.

III. METHOD EXPLANATION

This project explores an introductory level understanding
of fast-velocity small-area object tracking by applying cutting-
edge neural network models to live tennis videos presented by
the ATP. The objective of this paper is to find a solution that
can effectively predict the location of a tennis ball in contrast
to its background as its speed is rapidly changing through the
dynamic environment of a professional match. By
successfully tracking the location of a tennis ball, it can be
possible to gain an understanding as to how industrial deep
learning applications work, such as automatic line calling
systems.

 This study employs an experimental research design to
investigate two independent deep neural network architectures
towards live object detection. It employs a computer-vision
based approach to detect and localize tennis balls in images
and video frames. This decision was motivated by the need for
a robust solution to be applied to diverse environmental
conditions and player actions. Object detection allows for the
simultaneous localization and classification of tennis balls,
providing rich information for subsequent analysis.

A. Dataset Creation

The first step in this experimental procedure is to obtain
access to sufficient training data for the network architectures.
To properly apply tennis ball detection across a diverge range
of environments, it is important to have access to a diverse
array of tennis ball images across different environments. For
the purpose of simply detecting a tennis ball through the
standard position of a camera through live broadcasting of
matches by the ATP, it is important to have access to many
different frames of training videos extracted into frames with
tennis ball locations labeled. However, since this research is
applied to subsequent analysis, it is also important to
recognize the tennis ball pattern outside of a zoomed-out top-
down perspective. Therefore, the creation of the dataset
consists of over 2000 images composed of both image frames
from replayed matches, as well as generic stock images of
tennis balls. This process will be explained further in the Data
Acquisition section.

B. Models

To address the object detection challenge in this research,
two prominent deep learning frameworks have been
employed. These frameworks were chosen due to their proven
effectiveness in handling object detection tasks and their
distinct architectural characteristics.

The first solution utilizes Mask R-CNN, which is
renowned for its precise instance segmentation capabilities.
This model was employed to provide pixel-wise localization
of tennis balls. The model extends the Faster R-CNN
architecture by incorporating an additional branch that

predicts segmentation masks for each detected object. The
utilization of Mask R-CNN aims to enhance the granularity of
our object detection results.

Figure 1: The Mask R-CNN model architecture for instance segmentation.

Referenced via [9].

Additionally, the second solution utilizes YOLOv8, which
is a state-of-the-art real-time object detection framework
known for its speed and accuracy. YOLOv8 employs a single
neural network to simultaneously predict bounding boxes and
class probabilities for multiple objects within an image. The
architecture divides the image into a grid and predicts
bounding boxes with associated confidence scores for each
grid cell. This real-time processing capability makes YOLOv8
particularly well-suited for applications demanding low-
latency responses, such as tracking fast-moving objects in live
tennis game scenarios.

Figure 2: A brief summary of the YOLOv8 model architecture. Referenced

via [10]

The implementation procedure of both of these models is
as follows. First, both frameworks were initialized with pre-
trained weights on general object detection datasets to
leverage prior knowledge. Specifically, they were both
initialized as checkpoints for a tuning process. The second
step involves tuning these models through brute-force
methods to optimize their performance for tennis ball
detection. The results of this tuning process will be explained
through the Experiment Settings section.

Lastly, both models were deployed and ran through two
independent sets: a validation set a test set. The validation set
is composed of labeled images from both generic tennis balls
and extracted frames from live matches. This way, the mAP
can be algorithmically computed and compared. Moreover,
the test set is consistent of purely extracted frames from tennis
videos, and the precision was manually determined by
individually observing each output frame and constructing a
confusion matrix.

C. Evaluation Metrics

There are three evaluation metrics being used to compare
the performance of these models. Each individual metric can
provide a valuable insight to a specific detail presented by the
results. However, each of these metrics will be measured using
a confusion matrix, which is shown below.

Figure 3: A confusion matrix stores the truth values through a classification
algorithm. In this case, binary classification is employed, and each square

represents either a correct or incorrect classification depending on its label.

Referenced via [11].

Figure 3 represents a binary confusion matrix, which
presents true negatives (TN), true positives (TP), Type I
errors, and Type II errors. For the sake of explanation, assume
that a binary classifier can label an object as “Positive” or
“Negative.”

• TN: The classifier labels an object as “Negative” that
is truly “Negative.”

• TP: The classifier labels an object as “Positive” that
is truly “Positive.”

• Type I Error: The classifier labels an object as
“Negative” when it is really “Positive.”

• Type II Error: The classifier labels an object as
“Positive” when it is really “Negative.”

There are two important equations that can be derived
from a confusion matrix, which are shown below.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑦𝑝𝑒 𝐼 𝐸𝑟𝑟𝑜𝑟

Equation (1): Precision Score

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑦𝑝𝑒 𝐼𝐼 𝐸𝑟𝑟𝑜𝑟

Equation (2): Recall Score

Precision is defined by Equation (1) and counts the total
number of “Positive” labels that were made correctly against
the total number of “Positive” labels assigned overall.

Precision is a good metric to use when the cost of a Type I
error is high. In this context, a Type I error is when an object
is labeled as a tennis ball, but is not actually a tennis ball.

Recall is defined by Equation (2) and counts the total
number of “Positive” labels that were made correctly against
the total number of “Positive” values that exist in the dataset.
Recall is a good metric to use when the cost of a Type II error
is high. In this context, a Type II error is when the object is
not classified as a tennis ball, but actually is one.

In the context of this research, precision is a more powerful
metric to use. Making sure that a tennis ball is found always is
important for integration into industrial applications such as
automatic line calling, so making sure that an object is
detected serves as the primary objective. Therefore, precision
will be evaluated in different metrics for analysis.

The first evaluation metric is mean average precision, or
mAP. The mAP, or sometimes just AP, and can be computed
algorithmically, which saves time on the computation step.
Specifically, this study will focus on mAP@IoU=50%.

mAP is the average of the precision values across different
recall levels. Since this project only has one class, the mAP
can be substituted with AP, which determines the average
precision among all classifications. Intersection over union
(IoU) is a threshold specifier for considering a detection as
correct. If the IoU between the predicted bounding box and
the ground truth is greater than or equal to 50%, then the
detection is considered correct.

mAP@IoU=50% provides an aggregated measure of how
well the object detection model performs across different
levels of recall, with a specific focus on bounding boxes that
have at least a 50% overlap with the ground truth. Therefore,
for mAP@IoU=50% to be completed, a validation set will
need to be used. This metric will be computed using 30% of
the training data, and comparing the predicted bounding box
to the actual label.

The second evaluation metric is total precision across all
values in the test dataset. The test dataset will be composed of
image frame extractions from live tennis videos, and
sequentially fed into the network for analysis. By creating a
confusion matrix for each network, it is possible to determine
the precision score by referencing Equation (1). However, to
create the confusion matrix, this will require manual work by
labeling each “Positive” and “Negative” prediction as correct
or incorrect.

The third evaluation metric is total correct classifications
across the test dataset. Through the previous step, a confusion
matrix will be created. Therefore, the total number of correct
classifications can be computed by the following equation.

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠

Equation (3): Determine the correct number of classifications using a testing

dataset’s confusion matrix.

Thus, by calculating each of these scores, it can be
comprehensively determined where each model is strong, and
where any potential shortcomings may exist.

IV. DATA ACQUISITION

The primary objective of this project is to apply object
detection to live professional tennis matches. In accordance
with the ATP official rulebook – updated in 2021, Chapter 10,
Exhibits 07 [12] – there is a tournament requirement to
position a broadcasting camera along the back of a tennis court
parallel to its sidelines. That way, a standardized recording
format can be used for online viewership of these events.

Therefore, the initial strategy towards data acquisition
involved extracting frames from a diverse number of
professional matches in various countries, spread across the
three court surfaces: hard (concrete), clay, and grass.
Approximately 1000 images were collected this way, but upon
inspection, at a high resolution, tennis balls still only compose
several pixels across the image at every given time.

Figure 4: An example of an HD (1920x1080 pixels) frame taken from a

professional tennis match. The ball represents a very small number of pixels

taken above the net towards the center of the screen. Referenced via [13].

 The training dataset employed in this project comprises
two distinct clusters of images. The first cluster, exemplified
by Figure 4, consists of 959 images extracted from video
replays of professional ATP matches. This subset is further
categorized into different court surfaces, being collected
among hard courts, clay courts, and grass courts. The second
set of training images consists of 1285 generic stock tennis
ball images obtained from Adobe Stock [14]. In total, the
training dataset encompasses 2244 images, with 30% of these
images earmarked for validation purposes.

 The next step in this process is image annotation, which is
a crucial aspect of computer vision. It involves the meticulous
process of labeling the boundaries of tennis balls within the
training images, which provides the models necessary context
to recognize and comprehend visual elements. In this context,
effective image annotation is necessary for enhancing the
accuracy and reliability of object detection algorithms.

 As mentioned prior, there are over 2000 tennis ball images
in the training dataset. Hence, automating the process became
imperative, as manually labeling every image surpasses the
limit of human energy. Therefore, several different strategies
were used to streamline this process.

 The first model of this annotation procedure used color as
a primary discriminant for tennis ball identification.
Introducing a color classification method rooted in the HSV
color space, the algorithm was designed to delineate pixels
corresponding to the color characteristics of tennis balls.
Regrettably, this approach exhibited limitations, notably in
misidentifying extraneous elements, as illustrated in Figure 5.
Despite iterative adjustments to fine-tune the algorithm, it

failed to yield results of sufficient proximity for practical
deployment as an image labeling system, given the utilization
of mAP@IoU=50% as the benchmark evaluation metric.

Figure 5: An example of using color to localize tennis balls.

 The second model used for this annotation procedure
gravitated towards the Hough Circle Transformation. This is
a technique used for detecting circular objects within an
image, which can be transferred to detecting tennis balls.
Operating on the principle of transforming the image space to
a parameter space, the Hough Circle Transformation excels in
recognizing circular patterns through the identification of
relevant parameters, including the circle’s center coordinates
and radius. However, as shown by Figure 6, this center
coordinate detection presents errors when applied to diverse
environments, and other regions of interest end up being given
higher priority than the tennis ball during processing. After
fine-tuning, the model could not successfully automate the
tennis ball labeling process either.

Figure 6: An example of using the Hough Circle Transformation to localize
tennis balls.

 The third attempt at solving this problem was deemed
successful through the usage of Roboflow. Roboflow is an
online neural network resource that provides tools for
enhancing the image annotation process, involving the use of
smart labeling tools trained on their connected networks. It
empowers developers to easily create computer vision
applications, without a dependency on code. It can be used for
dataset annotation, preprocessing, transferring, exporting, and
model training.

 Firstly, several hundred stock images of tennis balls were
labeled using the smart polygon tool. [15] This is an
annotation assistant available through the Roboflow annotate
program that uses a machine learning model to suggest a shape
for the object being presented. It requires the user to mouse

click the center of an object to be detected but can speed up
annotation by removing the process of drawing boundaries
around each object. Additionally, it allows for better fits by
applying extra clicks inside and outside the suggested region
to fine-tune the suggestion.

 Figure 7: An example of using the smart polygon feature from
Roboflow to localize tennis balls.

 Second, Roboflow supports online model training,
providing a valuable avenue for deployment in forthcoming
projects, or unlabeled existing datasets – which can be applied
to remainder of the tennis ball data. Leveraging this
functionality, a fast object detection model was trained,
yielding an impressive mean Average Precision (mAP) score
of 94.0%, thereby streamlining the annotation process for the
remaining tennis ball dataset. This transformative capability
significantly reduced the annotation timeline from what would
have been nearly impossible to a matter of several hours.

 Nevertheless, a challenge persisted, stemming from the
very small size of tennis balls within frames extracted from
professional tennis matches, rendering them elusive for
detection through the classifying model. Consequently, the
solution involved the manual classification of all 959 images,
accomplished with precision and efficiency utilizing
Roboflow's advanced bounding box drawing tool.

Figure 8: A bounding box drawn around a tennis ball during a professional
tennis point using Roboflow’s bounding box annotation feature.

 Through these methods, the complete labeling of all 2244
images within this dataset was successfully achieved. Next,
the dataset was split using a 70:15:15 ratio for the training,
validation, and test sets, respectively. 70% of the images were
split for training the model, 15% for the validation set to fine-
tune hyperparameters, and the remaining 15% for evaluation
purposes in the testing set, employing the mAP@IoU=50%
metric. It is noteworthy that Roboflow Universe [16] allows
for online dataset reference via API calls in any live Jupyter
Notebook file, a capability that proves particularly valuable
when using Google Colab. [17] Further details on this training

process will be expounded upon in the Experiment Settings
section.

 Moreover, the other evaluation metric resides on manual
observation of tennis ball classification through video data
feed. Therefore, this testing dataset also needs to be created to
allow evaluation of precision and correct classification
percentage. Therefore, two entire points on hard courts, clay
courts, and grass courts were extracted into 1729 images,
which composes the video training set. After each model is
deployed, they will be fed in each image frame as a sequence,
and return the corresponding sequence with either a label
drawn around one specific object, or no label drawn signifying
the absence of a detection.

V. PSEUDOCODE

For the scope of this project, there are two main segments
that can be explained through pseudocode: Mask R-CNN
model implementation and YOLOv8 model implementation.
Both frameworks rely on using a model checkpoint and fine
tuning hyperparameters to transfer the classification task to
tennis balls. By viewing each framework independently, an
insight on their differences and strengths can be outlined. It is
important to note that both models have been implemented
through the use of Google Colab and its integrated T4 GPU.

A. Mask R-CNN

It is important to note that a detailed walkthrough of
loading a Mask R-CNN checkpoint is provided by the official
Google Colab tutorial of Detectron2. [18] By referencing this
process, it is simple to transfer responsibility of the object
detection to a custom dataset, as well as introduce sanity
checks to ensure functionality is correct. Moreover, the first
step in this implementation is to install detectron2, which can
be done by the line of code below.

!python -m pip install

'git+https://github.com/facebookresearch/detectron2.git'

Moreover, this implementation will be using PyTorch,
[19] so it is important to import the required libraries, as
shown below.

import torch, detectron2

The first step to train any network is to accumulate training
data. This data has been labeled previously using Roboflow,
and can be accessed by using an API call. Specifically, we can
use the segment of code below to access the specific project.
However, the API key is censored for security reasons.

rf = Roboflow(api_key="______")

project = rf.workspace("joshuaglaspey-n5m2m").project

("tennis-ball-segmentation")

dataset = project.version(1).download

("coco-segmentation")

 From here forward, the implementation will be described
using pseudocode to illustrate the process. Once the dataset is
locally downloaded (or saved to RAM if using Google Colab),
it can be registered to the COCO database. This is necessary
to call the datasets during training. As mentioned previously,
the dataset has already been partitioned into three separate
categories using a 70:15:15 split for training, validation, and
testing.

Create names to represent file data

TRAINING_DATA_NAME = "name to be registered to

the COCO database"

TRAINING_DATA_IMAGES_PATH = "local directory to

the training data"

TRAINING_DATA_ANNOTATIONS_PATH = "local directory

to the training data annotation json file"

Register the data to COCO dataset

register body to coco instances (

 name = TRAINING_DATA_NAME,

 json file = TRAINING_DATA_ANNOTATIONS_PATH

 image root path = TRAINING_DATA_IMAGES_PATH

)

Repeat for Validation and Test sets

 Now that the data has been imported into the project, it is
time to import the checkpoint of the Mask R-CNN framework.
This can be done through referencing the following
configuration:

• COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x

COCO is included with the installation of detectron2, and
includes loadable checkpoints for many different models,
which includes Mask R-CNN as provided by the line above.
Additionally, the following hyperparameters are configurable
for this model.

Hyperparameters

max_iterations

evaluation_period

base_learning_rate

number_of_classes

number_of_workers

batch_size

Transfer checkpoint model

model weights = "Mask R-CNN Configuration"

model training data = TRAINING_DATA_NAME

model validation data = VALIDATION_DATA_NAME

model testing data = TESTING_DATA_NAME

Transfer the hyperparameters

to the checkpoint model

At this point, it is now a matter of training the model. This
can be done by creating a Training object, and calling it to
train the detectron2 configuration, which is visualized below.

Train the model

trainer = Trainer(detectron2 configuration)

trainer = Begin new train

trainer.train()

 Now, after waiting for the training process to complete, the
Mask R-CNN model is completed. The mAP@IoU=50% can
be evaluated using the method below.

Determine mAP through test data

evaluator = new COCOEvaluator using TEST_DATA_NAME

test_loader = loader using TEST_DATA_NAME

print(stastics:

 Model: detectron2 configuration

 Loader: test_loader

 Evaluator: evaluator

)

The mAP will be displayed using this

 Lastly, to create precision and total correct percentage
metrics, the video testing set needs to be annotated using the
model’s predictions. This can be implemented using the
method below.

Register video testing data to COCO

Run predictions on the data

for each image:

 outputs = detectron2.predict(image)

 # Filter detection based on threshold, and only

display the highest

 detections_above_threshold =

outputs[all detections] > threshold_amount

 if detections_above_threshold.any():

 highest_confidence_index = max

(detections_above_threshold)

 # Apply annotation

 visualizer = new Visualizer object

 output = visualizer.draw_prediction(

outputs[all detections][highest_confidence_index])

 store annotated image to new file path

 save the image

Download all images

After implementing this code, uploading and registering
the data sets, and executing the program, the 1729 video
frames can be manually observed to construct a confusion
matrix for performance interpretation.

B. YOLOv8

The YOLOv8 implementation through Google colab
follows a similar structure to the Mask R-CNN
implementation. It is more concise overall, but references data
from Roboflow all the same. Therefore, the first step is to
import the necessary libraries and data.

!pip install ultralytics==8.0.196

!pip install roboflow

from roboflow import Roboflow

rf = Roboflow(api_key="_________")

project = rf.workspace("joshuaglaspey-n5m2m")

.project("tennis-ball-detection-vmjer")

dataset = project.version(5).download("yolov8")

 Once the data is imported, Ultralytics, the creator of the
YOLO framework, provides a simple method call for tuning a
network. For this project, the call can be shown by the logic
below.

Tune hyperparameters

load YOLO "nano" model checkpoint

model.tune(data = data.yaml,

 Input hard-coded parameters here)

 Once the model.tune() function is called, the best
hyperparameters are stored to a file with the name:
“best_hyperparameters.yaml.” Therefore, by combining these
hyperparameters with the data file that contains training,
validation, and testing image directories, it is possible to
automate the tuning process to feed hyperparameters into the
model to be trained.

 This can be shown by the logic below.

Function to take the paramaters of a tuned model

and import them to the .yaml file of the dataset

def move_yaml_contents():

 # Path to the first YAML file

 file1_path = "best_hyperparameters.yaml"

 # Path to the second YAML file

 file2_path = "data.yaml"

 Read the contents of the first YAML file

 Save it to a buffer

 Append the contents of the first YAML file

 to the second YAML file using the buffer

 Moreover, once the data file has been setup, it is now
possible to train the YOLOv8 network. Once again, this is
simplified using Ultralytics’ YOLO model function calls,
where the logic is shown below.

load YOLO "nano" model checkpoint

move_yaml_contents()

Train the YOLO model

!yolo

 task=detect

 mode=train

 model=yolov8n.pt

 data=data.yaml

 From this point, the model is trained. Now it is a measure
of determining the three metrics.

 The first metric, mAP@IoU=50% can be determined
using a validation function provided by Ultralytics. This is
shown below.

!yolo

 task=detect

 mode=val

 model=best weights model

 data=data.yaml

 Lastly, to determine the precision and correct
classification percentage, the code imports an additional
unlabeled dataset and runs a prediction task on it. Once again,
this is simplified to one line of code.

!yolo

 task=detect

 mode=predict

 model=best weights model

 confidence threshold=some value

 source=unlabeled images

 Thus, the final steps are to download and observe all of the
images to construct a confusion matrix.

VI. EXPERIMENT SETTINGS

The experiment involves having a fine-tuned
configuration to produce optimal results in the realm of tennis
ball detection.

A. Dataset

The training dataset is consistent of two groups of images.
The first group is comprised of generic tennis ball stock
images across diverse environments. This way, the tennis
ball’s color and pattern can be learned against different colors
and shapes in the background. Additionally, it is also
consistent of frames taken from professional points. These
images, as shown by Figure 4, are zoomed out, and each tennis
ball makes up several pixels across an HD image. All of the
stock images are standardized to the same 256x256 resolution,
and all of the video frames are default exported at 1920x1080
pixels. There is a total of 2244 images, 70% of which have
been designated for training. Therefore, 1570 images are
within the training dataset.

The validation and testing datasets are consistent of the
same types of data as the training dataset – tennis ball stock
images and video frames from professional points. Each of

these sets contains 15% of the dataset pool, so both of these
sets contain 337 images.

The testing dataset will be used to determine the mAP for
each model. Both implementations contain an algorithmic
method for determining model performance, which includes
the mAP@IoU=50% metric.

An additional testing dataset, known as the video testing
dataset, will be consistent of 1729 extracted frames from six
different tennis points. Two of these points will be on hard
courts, two on clay courts, and two on grass courts. This data
will be fed into each deployed network, and the number of
correct and incorrect classifications will be manually counted
and constructed into a confusion matrix.

B. Machine Configuration

Both of these networks are deployed through Google
Colab. Therefore, the machine performance is dependent on
the resources provided by this environment. For this
implementation, it is necessary to use a CUDA-enabled GPU,
which can be accessed via Google Colab’s Tesla T4 GPU.
[20] This GPU features:

• 2560 CUDA cores

• 320 Tensor cores

• 16GB of GDDR6 memory

• 320GB memory bandwidth

This information makes the Tesla T4 GPU a strong resource
to be used for training these networks.

C. Parameters

Each individual framework features specific hyperparameters
that can be used to boost the performance of their deployed
networks. A list for each of these is shown below.

a) Mask R-CNN

• Maximum number of iterations: 2000

• Evaluation period: 200

• Base learning rate: 0.001

• Number of classes: 1

• Weights: Load from “mask_rcnn_R_101_FPN_3x”

checkpoint

• Batch size: 64

• Number of workers: 2

• Instances per batch: 2

• Mask format: “bitmask”

b) YOLOv8

• Epochs: 50

• Learning rate: 0.00801

• Learning rate factor: 0.00787

• Momentum: 0.88389

• Weight decay: 0.00058

• Warmup epochs: 4.38397

• Warmup momentum: 0.95

• Box localization: 6.84435

• Classification loss coefficient: 0.27659

• Dynamic feature learning coefficient: 1.78844

• HSV Hue: 0.01879

• HSV Saturation: 0.6589

• HSV Value: 0.4689

• Degrees: 0

• Translation: 0.08389

• Scale: 0.47946

• Shear: 0

• Perspective: 0

• Flip up-down: 0

• Flip left-right: 0.4642

• Mosaic: 1.0

• Mixup: 0

• Copy/paste: 0

VII. EXPERIMENTAL RESULTS

Initially, the experimental procedure followed this original
structure:

1. Research state-of-the-art deep neural network
models that excel in object detection.

2. Use a collection of back-perspective tennis videos
along with stock images of tennis balls to train the
networks with diverse inputs.

3. Perform metric calculations on the models
algorithmically. Specifically, determine the
mAP@IoU=50%.

4. Input a frame sequence from live tennis points and
manually determine the precision of each model.

A. Mean Average Precision

For the experimental results, the first metric to be
determined is the mAP@IoU=50% score. Using the
algorithms provided by both detecton2 and YOLO, it is
possible to algorithmically determine this metric using the
same testing dataset. This way, since both models have been
trained, validated, and tested using the same images, bias can
be minimized.

The results of the mAP@IoU=50% analysis are shown by
Table 1. By direct comparison, Mask R-CNN’s model
outperformed YOLOv8 in terms of average precision using an
IoU threshold of 50% by 45%. In other words, on average, the
Mask R-CNN model could predict a tennis ball’s region with
at least 50% confidence in 45% more circumstances than the
YOLOv8 model.

Mean Average Precision of the Two Frameworks

Framework mAP@IoU=50%

Mask R-CNN 0.787

YOLOv8 0.541

Table 1: The algorithmic collection of mAP@IoU=50% for each framework.
Detectron2 and YOLO provide built-in methods for computing these

values given an annotated dataset.

However, this metric is used to determine overall model
quality in all circumstances. For a combination of stock tennis
ball images and back-perspective professional tennis point
frames, these values are calculated. That means, in the general
application, Mask R-CNN is the stronger selection.

B. Difficulties with Original Precision Metric

Moving forward, to apply these frameworks to live tennis
matches, it is important to understand the precision score
when taken from the perspective of a camera positioned on the
perimeter of the tennis court.

Originally, the plan for determining precision was to
reference six unlabeled tennis points – two from hard courts,
two from clay courts, and two from grass courts – and allow
each model to predict the tennis ball in 1729 extracted frames.
Then, using manual labor, each image would be observed, and
a confusion matrix would be constructed.

However, after applying this method to both trained
models, the results were diminishing. Table 2 summarizes
these results for one point analyzed by each model. Every
frame was not analyzed due to the burden of limited
manpower, and once the results began accumulating, finishing
the procedure was deemed inconclusive.

Object Detection Applied from Back-Perspective Viewpoint

Framework Total Frames
Total Frames with a

Detected Tennis Ball

Mask R-CNN 263 94

YOLOv8 332 6

Table 2: The number of correctly classified frames given a distinct input of
a different tennis point for each framework. The totals did not yield

strong results, so this presented questions towards the setup of the

procedure.

Mask R-CNN was able to classify the tennis balls at a
higher percentage level, but overall, neither model produced
results nearly up-to-par as to what they each sell as. After
investigating, the most likely cause for this is the format in
which the input data is acquired. It is a popular topic for high
velocity low area object detection in the case of using deep
neural networks, but the provided input data is in HD format
(1920x1080 pixels). In each frame, the tennis ball contains a
radius of two to five pixels overall. This essentially blurs it
into the background and makes it no more apparent than many
regions proposed by the background.

Figure 9: An HD (1920x1080 pixels) frame taken from a professional
tennis match. The ball, positioned over the far tennis player, is nearly

impossible to see from this resolution, making it difficult for a computer to
perform essential training from this data.

In fact, there are a couple of reasons as to why, despite the
tennis ball being as easy to watch from a broadcasting
perspective, the tennis ball is impossible to locate from a still
image as shown by Figure 9. Firstly, the human brain can
detect motion tracking. Hyönä [21] references motion tracking
using human eyes in terms of saccades, which are rapid,
involuntary eye movements. The human visual system is

adept at following moving objects through a series of saccadic
eye movements, allowing for continuous tracking of the
object’s trajectory. This inherent capability of the human eyes
to engage in motion tracking aids in real-time perception,
which is a vast benefit to the limitations of the current setup
for this project.

The limitations of still images in capturing the essence of
motion tracking becomes evident through the use of a tennis
ball. A single image, as shown by both frameworks, fails to
convey the temporal aspect of the ball’s movement and the
dynamic interplay of forces involved. Motion tracking using
human eyes involves not only the ability to smoothly follow
the movement of an object, but also to predict its future
location based on visual cues. Still images lack the temporal
dimension required for accurate motion tracking, making it
challenging for observers to precisely locate the tennis ball’s
position at a given moment.

Secondly, humans have the benefit of binocular vision,
which contributes to depth perception. Boyd [22] explains
binocular vision as the utilization of input from both eyes of a
human. By nature, this is a limitation of the current project, as
the input is the result of a single camera feed. Using two inputs
enables depth perception through convergence, where each
eye captures an object from slightly different angles. The brain
integrates these perspectives – a process known as stereopsis
– providing a three-dimensional understanding of the
environment. This binocular advantage proves essential in
accurately tracking moving objects, especially in the context
of a small tennis ball.

Conversely, individuals with monocular vision may
encounter challenges in depth perception, lacking the
stereoscopic input of binocular vision. While it is possible for
prolonged monocular vision individuals to adapt, their depth
perception differs. This is the problem faced by using a one-
camera system for observing a tennis ball: there is no direct
implementation of depth perception. This makes spatially
tracking the small object difficult as it is presented with such
a small area.

Thirdly, humans rely on cognitive processing, which is the
processes of the human brain filtering out irrelevant
information to focus on the most salient aspects of a scene.
Zhao [23] studies cognitive processing for object tracking
with multiple features. When tracking a tennis ball, the brain
engages in this to prioritize and selectively attend the critical
features of a ball while disregarding distracting background
details. The challenge arises for these frameworks because the
tennis ball is only several pixels in size, and its visual
representation may align with various features in the
background.

This task becomes even more challenging when the visual
environment is dynamic, with changing background and
lighting conditions between facilities. The brain must
continuously adapt its cognitive process to ensure that it
accurately tracks the ball’s movement, even when it aligns
with various background features. Despite these challenges,
the human visual system demonstrates a remarkable ability to
filter out irrelevant information and focus on crucial elements.
This is a limitation of this current project, as not having a
cognitive process system yields setbacks on understanding
changes in the environment and not attributing the small tennis
ball region to other unrelated areas.

C. Refined Precision Metric for Object Detection

Thus, considering all of the factors of the original method,
it is worth noting that, to stay true to the original objective of
this project, it is unwise to train new networks. Rather, it is
imperative to change the means at which the unlabeled input
data is presented. Due to the nature of HD images, the scale of
a tennis ball is too small to properly be analyzed by deep
neural networks that have not been trained with prediction
calculations or binocular vision. However, this project’s scope
is to provide accurate tennis ball tracking during professional
match play from the perspective of the cameras along the
peripheral of the court.

As mentioned prior, the ATP positions cameras along the
entire perimeter of the tennis court to track the tennis ball’s
location at all times. This is used for automatic line calling, as
well as other topics. Thus, rather than provide the video feed
from a zoomed-out backwards perspective, it is possible to use
zoomed-in replays of points to accurately track the tennis
ball’s location. After a tennis point is completed on a live
broadcast, the final couple swings are replayed while zooming
in on the tennis player and the ball. This drastically increases
the size of the tennis ball within the input image, as shown by
Figure 10.

Figure 10: An HD (1920x1080 pixels) taken from a replay of a live
professional tennis match. The tennis ball is large because the camera is
zoomed in to replay a specific shot from the last point.

Therefore, by using these zoomed-in videos, it is possible
to redeploy each of the two frameworks to a new collection of
1814 unlabeled frames. Therefore, the new project procedure
is shown below:

1. Research state-of-the-art deep neural network
models that excel in object detection.

2. Use a collection of back-perspective tennis videos
along with stock images of tennis balls to train the
networks with diverse inputs.

3. Perform metric calculations on the models
algorithmically. Specifically, determine the
mAP@IoU=50%.

4. Input 1814 extracted frames from replays of live
professional tennis points, and manually construct
feature matrices from the results.

D. Precision

Each network is trained using the collection of 1570
combined back-perspective images extracted from
professional tennis points and generic stock images of tennis
balls. Then, using these models, 1814 extracted frames from
replays of live professional tennis points can be used as inputs

for object prediction. An example of successful predictions
can be shown by Figures 11 and 12.

Figure 11: A successful detection of a tennis ball using Mask R-CNN.

Figure 12: A successful detection of a tennis ball using YOLOv8.

The confusion matrices for both frameworks are shown by
Figures 13 and 14. To reiterate, these matrices were computed
using manual labor, as the data is unlabeled and presents no
algorithmic method to determine precision nor correct
classifications.

Figure 13: The confusion matrix for the classification results determined by
the Mask R-CNN model.

Figure 14: The confusion matrix for the classification results determined by
the YOLOv8 model.

For this study, it is imperative to understand the
implications of a Type I and Type II error. The Type I error,
signified by the false positive total, is when an object is labeled
as a tennis ball, but is not actually a tennis ball. The Type II
error, signified by the false negative total, error is when the
object is not classified as a tennis ball, but is a tennis ball. It
has been established that precision will be utilized because the
objective of this project is to ensure that the tennis ball is
tracked for the entire duration of the input video. Therefore,
for precision, the false positive proportion to total positive
classifications will be analyzed.

On a separate note, each of these two models exhibits
distinct behaviors. For the Mask R-CNN model, there is a
large number of false positives, signifying that frequently the
framework selected a separate region of interest as what it
believed to be a tennis ball. This occurred nearly one-third of
the total positive classifications. Moreover, there was almost
never an unclassified frame, as there were only 91 total
negative classifications.

The YOLOv8 model exhibited nearly opposite behavior.
There is a much smaller quantity of false positive
classifications in comparison to the Mask R-CNN model, but
as a proportion to overall positive classifications, it makes up
about a fifth of the total. Furthermore, there were only 527
positive classifications, which is diminishing in comparison to
the 1724 positive classifications of the Mask R-CNN model,
and of the 1814 total frames used as input. Conversely, there
were 1288 negative classified frames, where 1187 of those
were made incorrectly. In other words, in 1187 frames
extracted from live replays, there was no tennis ball detected
when a tennis ball was present.

Moving on, using Equations 1 and 3, it is possible to
determine the precision and correct classification percentage
of these two models. These results are shown in Table 3.

Precision and Correct Classification Percentage of the Two
Frameworks

Framework Precision
Correct Classification

Percentage

Mask R-CNN 0.676 67.49%

YOLOv8 0.806 28.98%

Table 3: The precision and correct classification percentages of both Mask
R-CNN and YOLOv8. These metrics were calculated using the results

of their respective confusion matrices.

As shown by the results, in terms of precision, YOLOv8
has stronger results. In approximately four out of five
positively classified images, the YOLOv8 model will output
the tennis ball as the highest confidence prediction. Regarding
Mask R-CNN, approximately two out of three frames will
have the tennis ball given the highest confidence prediction.
In terms of ensuring correctness, YOLOv8 is the stronger
model.

However, in terms of the number of frames correctly
classified, Mask R-CNN is the heavy favorite. In
approximately two-thirds of the images, this model either
correctly classified a tennis ball as in the image, or correctly
did not classify anything because a tennis ball is missing.
However, the YOLOv8 produced poor results on this topic.
Only approximately 29% of the images sent through the
model were classified correctly. This can be attributed to the
large false negative total present in Figure 14.

VIII. DISCUSSION

The initial analysis focused on algorithmically
determining the mAP@IoU=50%. Using detectron2 and
YOLOv8, this metric was computed, revealing that Mask R-
CNN outperformed YOLOv8 by 45% of generic tennis ball
detection cases. These results imply that, in a general
application with diverse inputs, Mask R-CNN stands out as
the stronger choice.

Separately, the attempt to assess precision from a back-
perspective viewpoint using six unlabeled tennis points
encountered challenges. Both Mask R-CNN and YOLOv8
yielded inconclusive results due limitations of the project
setup and input data resolution. Therefore, to address these
limitations, which are outlined in Section 7.B, the project
adopted a refined method of accumulating precision. Instead
of training new networks, the focus shifted to using zoomed-
in replays of live professional tennis points to enhance the
visibility of the tennis ball. This approach aimed to present a
more realistic scenario for the models, as well as allow for
feasible object detection given HD (1920x1080 pixels)
images.

Using this refined process, the Mask R-CNN and
YOLOv8 models predicted tennis balls across a new
unlabeled data set of 1814 frames. Precision and correct
classification percentages were computed from their
confusion matrices.

While YOLOv8 showcased a higher precision metric,
meaning that a larger proportion of its positive classifications
were accurate, Mask R-CNN emerged as the frontrunner in
terms of correctly classifying a tennis ball overall. The balance
between precision and consistency is a critical consideration,
as it determines the effectiveness of each of these models in
different scenarios.

In terms of precision, YOLOv8 demonstrated a high
precision of 0.806, indicating that when it predicted the
presence of a tennis ball, it was correct 80.6% of the time. This
is beneficial in the scope of correctness, as YOLOv8 was
stronger in making sure that the highest confidence region of
interest was the tennis ball and not an arbitrary section of the
background.

In terms of correct classification percentage, Mask R-CNN
excelled in classifying a larger number of frames correctly. In
67.5% of the frames, the model either correctly identified a
tennis ball or correctly refrained from making a prediction
when a tennis ball was absent. This metric is critical in
ensuring tracking is consistent.

It would originally seem that YOLOv8 would be the
preferred model for this problem, as it yields a high precision
score. However, the very small overall correct classification
makes the model unusable for industrial applications. The
Mask R-CNN model also suffers from the fact that it tends to
attribute a separate section of the background to being the
tennis ball rather than the actual tennis ball. Thus, this model
also suffers in accuracy, and could not be deployed
industrially. However, this falls to the setup of the project, and
future ways to better this process are explored in the Future
Works section.

Overall, the Mask R-CNN model is preferred from these
results. The goal of this project is to ensure a comprehensive
and accurate tracking of the tennis ball, while also consistently
having it detected. The Mask R-CNN does not fall far behind

YOLOv8’s precision, and far excels in correctness. Its ability
to classify a higher percentage of frames implies a more
reliable performance in scenarios where the tennis ball might
be challenging to detect due to its small size and dynamic
backgrounds.

IX. CONCLUSION

In this research process, the application of deep neural
network models, specifically Mask R-CNN and YOLOv8,
was explored for the challenging task of object detection in
live professional tennis matches. The project aimed to track
tennis balls in real-time, following the ATP’s guidelines for
camera placement and considering the diverse conditions of
different court surfaces.

The evaluation began with the acquisition of data. The
project utilized HD images of the back-perspective viewpoint
of live professional tennis points, as well as generic stock
images of tennis balls as the training data collection. This
allowed for generalization of the data, as well as knowledge
for detecting the tennis ball in a live point scenario. The
models were tested using unlabeled data from zoomed-in
replays.

The first metric determined was mAP@IoU=50% for both
models. The results indicated that Mask R-CNN outperformed
YOLOv8 by 45%, suggesting its superiority in generic tennis
ball detection across diverse scenarios.

However, when transitioning to a more practical scenario
involving the back-perspective viewpoint commonly used in
live broadcasts, both models faced challenges. The original
precision metric, determined by manual observation of six
unlabeled tennis points, provided inconclusive results.
Limitations arose from the small size of tennis balls in HD
images, lack of motion tracking, monocular vision constraints,
and the absence of cognitive processing akin to human visual
systems.

Recognizing these limitations, a refined approach was
adopted, utilizing zoomed-in replays of live professional
tennis points. This sought to enhance the visibility of the
tennis ball and present a more realistic input scenario. The
subsequent precision and correct classification analyses
produced nuanced insights into the models’ performance.

While YOLOv8 exhibited a higher precision, indicating
more accurate prediction when a tennis ball was detected,
Mask R-CNN excelled in overall correctness. Mask R-CNN
demonstrated its ability to classify a larger number of frames
correctly, ensuring a more reliable performance in scenarios
where detecting the small-sized tennis ball amid dynamic
backgrounds proved challenging.

Considering the project's objective of comprehensive and
accurate tennis ball tracking during professional matches,
Mask R-CNN emerged as the preferred model. Despite its
tendency to attribute separate sections of the background as
tennis balls, its higher correct classification percentage and
balance between precision and consistency make it more
suitable for industrial applications where reliable tracking is
imperative.

In conclusion, this study contributes valuable insights into
the complexities of deploying deep neural network models for
real-time object detection in professional tennis matches. The
findings underscore the importance of considering

specificities in camera perspectives and image resolutions for
effective model deployment in dynamic sports environments.

X. FUTURE WORKS

This research lays the foundation for further exploration in
refining object detection models for live tennis match
scenarios. As discovered by the original precision metric
calculations, many factors can be weighed into the unlabeled
data acquisition process. Being restricted to one zoomed-out
camera and only HD image frames made the object detection
problem struggle with accuracy. There are ways to address
this problem so that the original broadcasted angle can be
used, and successful tracking may be implemented.

One promising avenue for future research is incorporating
motion tracking capabilities into the object detection models.
The human visual system’s ability to engage in motion
tracking provides an extra dimension to real-time perception.
Integrating motion tracking algorithms into deep neural
networks can enhance the models’ understanding of the
temporal aspect of the tennis ball’s movement. Exploring and
adapting existing motion tracking techniques for object
detection in dynamic sports environments could significantly
improve the model’s predictive capabilities.

To ensure the continuity and realism of tennis ball
tracking, future works could explore methods to incorporate
motion tracking data for predicting the subsequent ball
location. By leveraging the information from the motion
tracking algorithms, the models can make predictions that are
not unreasonably far from the previous frame’s detection. This
approach aims to emulate the human visual system’s ability to
anticipate an object’s future location based on its trajectory.
Implementing predictive elements into the models would
contribute to more accurate and consistent tennis ball tracking.

Moreover, expanding the data acquisition setup to include
more than one camera could address the depth perception
challenge outlined in the limitations. Drawing inspiration
from the human binocular vision system, utilizing multiple
cameras placed around the tennis court, similar to the ATP’s
guidelines on camera placements, can provide distinct
perspectives, allowing for convergence and stereopsis. This
binocular advantage contributes to enhanced depth
perception, potentially making it easier for the models to
spatially track the small tennis ball accurately.

Additionally, the insights gained from this research can be
extrapolated to other domains facing challenges in fast-
velocity, small area detection. By transferring the knowledge
and methodologies developed for tennis ball tracking to
similar scenarios, such as other sports or robotics, the
applicability and effectiveness of the models can be extended.
This cross-disciplinary approach could open avenues for
advancements in real-time object detection in diverse fields
where precision and speed are critical.

REFERENCES

[1] Wu, D.; Xiao, A. Deep Learning-Based Algorithm for Recognizing
Tennis Balls. Appl. Sci. 2022, 12, 12116. https://doi.org/
10.3390/app122312116

[2] “OpenCV: Hough Circle Transform,” docs.opencv.org.
https://docs.opencv.org/4.x/da/d53/tutorial_py_houghcircles.html

[3] Y.-C. Huang, I.-N. Liao, C.-H. Chen, T.-U. İk, and W.-C. Peng,
“TrackNet: A Deep Learning Network for Tracking High-speed and
Tiny Objects in Sports Applications,” arXiv:1907.03698 [cs, stat], Jul.
2019, Available: https://arxiv.org/abs/1907.03698

https://arxiv.org/abs/1907.03698

[4] M, Archana & Geetha, M.. (2015). Object Detection and Tracking
Based on Trajectory in Broadcast Tennis Video. Procedia Computer
Science. 58. 225-232. 10.1016/j.procs.2015.08.060.

[5] W. Li, “Analysis of Object Detection Performance Based on Faster R-
CNN,” Journal of Physics: Conference Series, vol. 1827, no. 1, p.
012085, Mar. 2021, doi: https://doi.org/10.1088/1742-
6596/1827/1/012085.

[6] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1,
2018, doi: https://doi.org/10.1109/tpami.2018.2844175.

[7] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-Time Flying Object
Detection with YOLOv8,” May 2023. Available:
https://arxiv.org/pdf/2305.09972.pdf

[8] “Roboflow: Go from Raw Images to a Trained Computer Vision
Model in Minutes.,” roboflow.ai. https://roboflow.com/

[9] “What is Mask R-CNN? The Ultimate Guide.,” Roboflow Blog, Aug.
09, 2023. https://blog.roboflow.com/mask-rcnn/

[10] “Brief summary of YOLOv8 model structure · Issue #189 ·
ultralytics/ultralytics,” GitHub.
https://github.com/ultralytics/ultralytics/issues/189

[11] A. Suresh, “What is a confusion matrix?,” Medium, Nov. 20, 2020.
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-
d1c0f8feda5

[12] 2021 Rulebook - ATP Tour, https://www.atptour.com/-
/media/files/rulebook/2021/2021-atp-rulebook-chapter-10_exhibits-
07apr.pdf (accessed Dec. 3, 2023).

[13] “ATP Tennis Streaming Online - Watch Tennis Live,” Tennis TV -
ATP Tennis Streaming Online - Watch Tennis Live.
https://www.tennistv.com/

[14] Adobe, “Stock photos, royalty-free images, graphics, vectors &
videos,” Adobe Stock, 2019. https://stock.adobe.com/

[15] “Smart Polygon - Roboflow Docs,” Roboflow.com, 2023.
https://docs.roboflow.com/annotate/use-roboflow-annotate/smart-
polygon (accessed Dec. 03, 2023).

[16] “Roboflow Universe: Open Source Computer Vision Community,”
Roboflow. https://universe.roboflow.com/

[17] “AI-powered coding, free of charge with Colab,” Google, May 17,
2023. https://blog.google/technology/developers/google-colab-ai-
coding-features/

[18] “How to Train Detectron2 Segmentation on a Custom Dataset,”
colab.research.google.com.
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2Hwt
Xj7BMD_-m5

[19] PyTorch, “PyTorch,” Pytorch.org, 2023. https://pytorch.org/

[20] “NVIDIA Tesla T4 GPU,” www.itcreations.com.
https://www.itcreations.com/nvidia-gpu/nvidia-tesla-t4-
gpu#:~:text=Featuring%2013.6%20billion%20transistors%2C%20the
(accessed Dec. 03, 2023).

[21] Hyönä, Li, and Oksama, “Eye Behavior During Multiple Object
Tracking and Multiple Identity Tracking,” Vision, vol. 3, no. 3, p. 37,
Jul. 2019, doi: https://doi.org/10.3390/vision3030037.

[22] K. Boyd, “Depth Perception,” American Academy of Ophthalmology,
Mar. 23, 2018. https://www.aao.org/eye-health/anatomy/depth-
perception#:~:text=Depth%20perception%20is%20the%20ability

[23] C. Zhao et al., “How do humans perform in multiple object tracking
with unstable features,” Frontiers,
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.01940/full
(accessed Dec. 7, 2023).

https://doi.org/10.1109/tpami.2018.2844175
https://roboflow.com/
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5
https://medium.com/analytics-vidhya/what-is-a-confusion-matrix-d1c0f8feda5
https://www.tennistv.com/
https://blog.google/technology/developers/google-colab-ai-coding-features/
https://blog.google/technology/developers/google-colab-ai-coding-features/
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://doi.org/10.3390/vision3030037

